



has only one critical point at

. The function has Hessian

which is positive definite for all

, which means

attains a minimum at the critical point with a value of

.
To find the extrema (if any) along the boundary, parameterize it by

and

, with

. On the boundary, we have


Find the critical points along the boundary:


Respectively, plugging these values into

gives 11, 47, 43, and 47. We omit the first and third, as we can see the absolute extrema occur when

.
Now, solve for

for both cases:


so

has two absolute maxima at

with the same value of 47.
The answer is B. 7/48
Hope this helps!
A
substitute the given value for g into the expression and evaluate
- 5g - 6 = (- 5 × - 2 ) - 6 = 10 - 6 = 4 → A