Formula for Perimeter of Rectangle:
P = 2(L + W)
Plug in 160:
160 = 2(L + W)
L = 4W
So we can plug in '4W' for 'L' in the first equation.
<span>160 = 2(L + W)
160 = 2(4W + W)
Combine like terms:
160 = 2(5W)
160 = 10W
Divide 10 to both sides:
W = 16
Now we can plug this back into any of the two equations to find the length.
L = 4W
L = 4(16)
L = 64
So the width is 16, and the length is 64.</span>
For
1. its
D=Days
H=Hours
M=Minutes
3d+5h+15m
3d=72h+5h
72h+5h=77h
77h+15m=77h.15m
But i only have this one right now sorry :P
Answer: The system of equations is:
x + 2y + 2 = 4
y - 3z = 9
z = - 2
The solution is: x = -22; y = 15; z = -2;
Step-by-step explanation: ONe way of solving a system of equations is using the Gauss-Jordan Elimination.
The method consists in transforming the system into an augmented matrix, which is writing the system in form of a matrix and then into a <u>Row</u> <u>Echelon</u> <u>Form,</u> which satisfies the following conditions:
- There is a row of all zeros at the bottom of the matrix;
- The first non-zero element of any row is 1, which called leading role;
- The leading row of the first row is to the right of the leading role of the previous row;
For this question, the matrix is a Row Echelon Form and is written as:
![\left[\begin{array}{ccc}1&2&2\\0&1&3\\0&0&1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%262%262%5C%5C0%261%263%5C%5C0%260%261%5Cend%7Barray%7D%5Cright%5D)
![\left[\begin{array}{ccc}4\\9\\-2\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D4%5C%5C9%5C%5C-2%5Cend%7Barray%7D%5Cright%5D)
or in system form:
x + 2y + 2z = 4
y + 3z = 9
z = -2
Now, to determine the variables:
z = -2
y + 3(-2) = 9
y = 15
x + 30 - 4 = 4
x = - 22
The solution is (-22,15,-2).
The common difference is 4. U know that the formula is the first term + d(n -1). N-1 is 14 so u know that 14 times a number needs to equal 56 because the first term is -3 and 56-3 is 53. 14 * 4 is 56. So the common difference is 4