1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Phantasy [73]
3 years ago
13

Use the limit definition of the derivative to find the slope of the tangent line to the curve

Mathematics
1 answer:
ale4655 [162]3 years ago
3 0

Answer:

\displaystyle f'(4) = 63

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

Distributive Property

<u>Algebra I</u>

  • Expand by FOIL (First Outside Inside Last)
  • Factoring
  • Function Notation
  • Terms/Coefficients

<u>Calculus</u>

Derivatives

The definition of a derivative is the slope of the tangent line.

Limit Definition of a Derivative: \displaystyle f'(x)= \lim_{h \to 0} \frac{f(x+h)-f(x)}{h}  

Step-by-step explanation:

<u>Step 1: Define</u>

f(x) = 7x² + 7x + 3

Slope of tangent line at x = 4

<u>Step 2: Differentiate</u>

  1. Substitute in function [Limit Definition of a Derivative]:                              \displaystyle f'(x)= \lim_{h \to 0} \frac{[7(x + h)^2 + 7(x + h) + 3]-(7x^2 + 7x + 3)}{h}
  2. [Limit - Fraction] Expand [FOIL]:                                                                    \displaystyle f'(x)= \lim_{h \to 0} \frac{[7(x^2 + 2xh + h^2) + 7(x + h) + 3]-(7x^2 + 7x + 3)}{h}
  3. [Limit - Fraction] Distribute:                                                                            \displaystyle f'(x)= \lim_{h \to 0} \frac{[7x^2 + 14xh + 7h^2 + 7x + 7h + 3] - 7x^2 - 7x - 3}{h}
  4. [Limit - Fraction] Combine like terms (x²):                                                     \displaystyle f'(x)= \lim_{h \to 0} \frac{14xh + 7h^2 + 7x + 7h + 3 - 7x - 3}{h}
  5. [Limit - Fraction] Combine like terms (x):                                                      \displaystyle f'(x)= \lim_{h \to 0} \frac{14xh + 7h^2 + 7h + 3 - 3}{h}
  6. [Limit - Fraction] Combine like terms:                                                           \displaystyle f'(x)= \lim_{h \to 0} \frac{14xh + 7h^2 + 7h}{h}
  7. [Limit - Fraction] Factor:                                                                                 \displaystyle f'(x)= \lim_{h \to 0} \frac{h(14x + 7h + 7)}{h}
  8. [Limit - Fraction] Simplify:                                                                               \displaystyle f'(x)= \lim_{h \to 0} 14x + 7h + 7
  9. [Limit] Evaluate:                                                                                                 \displaystyle f'(x) = 14x + 7

<u>Step 3: Find Slope</u>

  1. Substitute in <em>x</em>:                                                                                                \displaystyle f'(4) = 14(4) + 7
  2. Multiply:                                                                                                           \displaystyle f'(4) = 56 + 7
  3. Add:                                                                                                                  \displaystyle f'(4) = 63

This means that the slope of the tangent line at x = 4 is equal to 63.

Hope this helps!

Topic: Calculus AB/1

Unit: Chapter 2 - Definition of a Derivative

(College Calculus 10e)

You might be interested in
You made some snacks for a party. You have 24 cheese snacks, 18 yogurt snacks, and 32 vegetable snacks. Total number of snacks.
Papessa [141]
The answer is 74 snacks.
24+32 =56
56+18=74
3 0
3 years ago
Read 2 more answers
Mike can drive his car 390 miles using 15 gallons of gasoline. Find the unit rate for the number of miles Mike can drive using o
Tasya [4]

Answer: 26 gallons.

390÷15

15 can go into 39 only 2 times.

39-30 is 9

15 can go into 90 only 6 times.

90-90 is 0.

3 0
3 years ago
Algebra public opinion polls reported in newspapers are usually given with a margin of error. for example, a poll with a margin
sweet-ann [11.9K]

Answer:

Minimum percent of the vote that candidate Towne is expected to recieve:

m=51% - 6.3% * 51% =47.787%

Maximum percent of the vote that candidate Towne is expected to recieve:

M=51% + 6.3% * 51% = 54.213%

Solution:

Margin of error: E=6.3%

Minimum percent of the vote that candidate Towne is expected to recieve:

m=51% - E * 51%

m=51% - 6.3% * 51%

m=51% - 51% * 6.3 / 100

m=51% - 3.213%

m=47.787%

Maximum percent of the vote that candidate Towne is expected to recieve:

M=51% + E * 51%

M=51% + 6.3% * 51%

M=51% + 51% * 6.3 / 100

M=51% + 3.213%

M=54.213%


8 0
3 years ago
s x – 5 a factor of the function f(x) = x3 – 5x2 + 7x – 35? Use the Remainder Theorem to justify your answer.
Assoli18 [71]

By using the remainder theorem we found that ( x - 5 ) is the factor of function  f(x) = x³ – 5x² + 7x – 35.

<h3>What is factorization?</h3>

Factorization is defined as splitting the polynomial into its most simplified form. This factor satisfies the polynomials from which it is extracted.

The factorization by using the Remainder theorem.

x - 5 )   x³ – 5x² + 7x – 35.( x ² + 7

             x³  -  5x²

             ______________

                00         7x - 35

                             7x - 35

              -------------------------

                                     00

Here the function is completely divided by the factor x - 5 therefore

by using the remainder theorem we found that ( x - 5 ) is the factor of function  f(x) = x³ – 5x² + 7x – 35.

To know more about factorization follow

brainly.com/question/25829061

#SPJ1

3 0
2 years ago
A rose garden is formed by joining a rectangle and a semicircle, as shown below. The rectangle is 31 ft long and 20 ft wide. If
vekshin1

Answer:

133 ft

Step-by-step explanation:

Given in the question,

length of the rectangle = 31 ft

width of the rectangle= 20 ft

diameter of semicircle = 20 ft

radius of semicircle = 20/2 ft = 10 ft

Formula to use:

<h3>perimeter of rectangle + perimeter of semicircle</h3>

perimeter of rectangle = 2(l+w)

perimeter of semicircle = 1/2(2πr)

Plug values in the formula above

2(31 + 20) + 3.14(10)

133.4 ft

≈ 133 ft

7 0
3 years ago
Other questions:
  • Help!!!!! I'm timed!!!!! ​
    7·1 answer
  • What is the sum of the geometric sequence -4, 24, -144, ... if there are 6 terms?
    8·1 answer
  • One teacher wants to give each student 35 of a slice of pizza. If the teacher has 6 slices of pizza, then how many students will
    9·1 answer
  • 8/9k + 9/5 = -4 - 9/7k
    10·1 answer
  • D. 2x2+3x-x2+y+y-(x2+2y)=3
    7·1 answer
  • Find the value of each variable
    7·2 answers
  • What is the value of p so that the line passing through (6, 2) and (10, p) has a slope<br> of -2?
    8·1 answer
  • (ii) 5ab +5 - 6ab - 1<br> How to do this ?
    5·1 answer
  • Plz help I need help
    15·1 answer
  • Instructions: Write an expression to represent the given scenario.
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!