Step-by-step explanation:
f(x) = x² + x + 3/4
in general, such a quadratic function is defined as
f(x) = a×x² + b×x + c
the solution for finding the values of x where a quadratic function value is 0 (there are as many solutions as the highest exponent of x, so 2 here in our case)
x = (-b ± sqrt(b² - 4ac))/(2a)
in our case
a = 1
b = 1
c = 3/4
x = (-1 ± sqrt(1² - 4×1×3/4))/(2×1) =
= (-1 ± sqrt(1 - 3))/2 = (-1 ± sqrt(-2))/2 =
= (-1 ± sqrt(2)i)/2
x1 = (-1 + sqrt(2)i) / 2
x2 = (-1 - sqrt(2)i) / 2
remember, i = sqrt(-1)
f(x) has no 0 results for x = real numbers.
for the solution we need to use imaginary numbers.
The ratio would look like 63:3.5, if simplified it would look like 18:1
The answer will be 207 with a remainder of 3. I attached my paper work for you to see the actual steps.
The size of any video depends on resolution of video, FPS and Audio Quality too. Uncompressed 1080p video of is 120–130mb per minute average
Answer: A
Suppose that the last dollar that Victoria receives as income
brings her a marginal utility of 10 utils while the last dollar that
Fredrick receives as income brings him a marginal utility of
15 utils. If our goal is to maximize the combined total utility of
Victoria and Fredrick, we should
a. Redistribute income from Victoria to Frederick
b. Redistribute income from Fredrick to Victoria
c. Not engage in any redistribution because the current situation already maximizes total utility
d. None of the above
Step-by-step explanation:
Marginal utility is the added satisfaction derived from consuming an additional unit of a good or service. In the above question, Fredrick derives more satisfaction from his last dollar than Victoria, and will therefore achieve a higher marginal utility with additional income than Victoria does with her current income. If we want to maximize the combined utility, we should redistribute income from Victoria to Fredrick.
The logic behind this is the diminishing marginal utility. The first unit of a good consumed gives the highest level of satisfaction, marginal utility reduces with additional units consumed. In the same way, when we spend our income, we purchase the things that give us the maximum satisfaction first.
.