D = number of dogs washed
c = number of cats washed
d = (60 - 5c) / 7.50
The 7.50 should be underneath the brackets
This question is incomplete
Complete Question
Consider greenhouse A with floor dimensions w = 16 feet , l = 18 feet.
A concrete slab 4 inches deep will be poured for the floor of greenhouse A. How many cubic feet of concrete are needed for the floor?
Answer:
96 cubic feet
Step-by-step explanation:
The volume of the floor of the green house = Length × Width × Height
We convert the dimensions in feet to inches
1 foot = 12 inches
For width
1 foot = 12 inches
16 feet = x
Cross Multiply
x = 16 × 12 inches
x = 192 inches
For length
1 foot = 12 inches
18 feet = x
Cross Multiply
x = 18 × 12 inches
x = 216 inches
The height or depth = 4 inches deep
Hence,
Volume = 192 inches × 216 inches × 4 inches
= 165888 cubic inches
From cubic inches to cubic feet
1 cubic inches = 0.000578704 cubic foot
165888 cubic inches = x
Cross Multiply
x = 16588 × 0.000578704 cubic foot
x = 96 cubic feet
Therefore, 96 cubic feet of concrete is needed for the floor
Find the perimeter of the polygon with the vertices g(2, 4), h(2,−3), j(−2,−3), g(2, 4), h(2,−3), j(−2,−3), and k(−2, 4)k(−2, 4)
Julli [10]
<span>The distance between g and h is sqrt[(2-2)^2+(4+3)^2]=7
The distance between h and j is sqrt[(2+2)^2+(-3+3)^2]=4
The distance between j and k is sqrt[(-2+2)^2+(-3-4)^2]=7
The distance between k and g is sqrt[(-2-2)^2+(4-4)^2]=4
The perimeter of the polygon is 7+4+7+4=22</span>
Consider one pyramid
Side length of base = 1.5cm and its height is 1 cm
Slant height of one of the lateral faces = sqrt(1^2 + 0.75^2) = 1.25 cm
Area of one of the triangular faces = 0.5 * 1.5* 1.25 = 0.9375 cm^2
There are 8 of these so the required surface area = 8 * 0.9375
= 7.5 cm^2 Answer