C=2pir
20pi=2pir
20pi/2pi=2pir/2pi
R=10
Height=10/2=5
Two circles surface areas is
2*pir^2
2pi10^2
2*100pi
200pi
The cylindrical part is
2pirh
2pi*10*5
100pi
Add 100pi+200pi=300pi
Answer:
B. 5.2
Step-by-step explanation:
<em><u>:-[ </u></em><em><u>y</u></em><em><u>o</u></em><em><u>u</u></em><em><u> </u></em><em><u>w</u></em><em><u>i</u></em><em><u>l</u></em><em><u>l</u></em><em><u> </u></em><em><u>k</u></em><em><u>n</u></em><em><u>o</u></em><em><u>w</u></em><em><u> </u></em><em><u>t</u></em><em><u>o</u></em><em><u> </u></em><em><u>h</u></em><em><u>a</u></em><em><u>v</u></em><em><u>e</u></em><em><u> </u></em><em><u>b</u></em><em><u>r</u></em><em><u>a</u></em><em><u>i</u></em><em><u>n</u></em><em><u>l</u></em><em><u>y</u></em><em><u>:-) </u></em>
Answer:
y = -4x² + 32x - 48
Step-by-step explanation:
The standard form of a quadratic equation is
y = ax² + bx + c
We must find the equation that passes through the points:
(2, 0), (6,0), and (3, 12)
We can substitute these values and get three equations in three unknowns.
0 = a(2²) + b(2) + c
0 = a(6²) + b(6) + c
12 = a(3²) + b(3) + c
We can simplify these to get the system of equations:
(1) 0 = 4a + 2b + c
(2) 0 = 36a + 6b + c
(3) 12 = 9a + 3b + c
Eliminate c from equations (1) and (2). Subtract (1) from (2).
(4) 0 = 32a + 4b
Eliminate c from equations (2) and (3). Subtract (3) from (2).
(5) -12 = 27a - 3b
Simplify equations (4) and (5).
(6) 0 = 8a + b
(7) -4 = 9a - b
Eliminate b by adding equations (6) and (7).
(8) a = -4
Substitute (4) into (6).
0 = -32 + b
(9) b = 32
Substitute a and b into (1)
0 = 4(-4) + 2(32) + c
0 = -16 + 64 + c
0 = 48 + c
c = -48
The coefficients are
a= -4, b = 32, c = -48
The quadratic equation is
y = -4x² + 32x - 48
The diagram below shows the graph of your quadratic equation and the three points through which it passes.
Answer:
See below.
Step-by-step explanation:
You haven't supplied a list but one option could be f(x) - l or x^2 - l.
This represents a vertical shift of 3 units downwards.