1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
spayn [35]
3 years ago
15

Use the definition of a Taylor series to find the first four nonzero terms of the series for f(x) centered at the given value of

a. (Enter your answers as a comma-separated list.) f(x) = 7 1 + x , a = 2
Mathematics
1 answer:
Black_prince [1.1K]3 years ago
8 0

Answer:

The first four nonzero terms of the Taylor series of \frac{7}{x + 1} around a=2 are:

f\left(x\right)\approx P\left(x\right) = \frac{7}{3}- \frac{7}{9}\left(x-2\right)+\frac{7}{27}\left(x-2\right)^{2}- \frac{7}{81}\left(x-2\right)^{3}+\frac{7}{243}\left(x-2\right)^{4}

Step-by-step explanation:

The Taylor series of the function <em>f </em>at <em>a </em>(or about <em>a</em> or centered at <em>a</em>) is given by

f\left(x\right)=\sum\limits_{k=0}^{\infty}\frac{f^{(k)}\left(a\right)}{k!}\left(x-a\right)^k

To find the first four nonzero terms of the Taylor series of \frac{7}{x + 1} around a=2 you must:

In our case,

f\left(x\right) \approx P\left(x\right) = \sum\limits_{k=0}^{n}\frac{f^{(k)}\left(a\right)}{k!}\left(x-a\right)^k=\sum\limits_{k=0}^{4}\frac{f^{(k)}\left(a\right)}{k!}\left(x-a\right)^k

So, what we need to do to get the desired polynomial is to calculate the derivatives, evaluate them at the given point, and plug the results into the given formula.

  • f^{(0)}\left(x\right)=f\left(x\right)=\frac{7}{x + 1}

Evaluate the function at the point: f\left(2\right)=\frac{7}{3}

  • f^{(1)}\left(x\right)=\left(f^{(0)}\left(x\right)\right)^{\prime}=\left(\frac{7}{x + 1}\right)^{\prime}=- \frac{7}{\left(x + 1\right)^{2}}

Evaluate the function at the point: \left(f\left(2\right)\right)^{\prime }=- \frac{7}{9}

  • f^{(2)}\left(x\right)=\left(f^{(1)}\left(x\right)\right)^{\prime}=\left(- \frac{7}{\left(x + 1\right)^{2}}\right)^{\prime}=\frac{14}{\left(x + 1\right)^{3}}

Evaluate the function at the point: \left(f\left(2\right)\right)^{\prime \prime }=\frac{14}{27}

  • f^{(3)}\left(x\right)=\left(f^{(2)}\left(x\right)\right)^{\prime}=\left(\frac{14}{\left(x + 1\right)^{3}}\right)^{\prime}=- \frac{42}{\left(x + 1\right)^{4}}

Evaluate the function at the point: \left(f\left(2\right)\right)^{\prime \prime \prime }=- \frac{14}{27}

  • f^{(4)}\left(x\right)=\left(f^{(3)}\left(x\right)\right)^{\prime}=\left(- \frac{42}{\left(x + 1\right)^{4}}\right)^{\prime}=\frac{168}{\left(x + 1\right)^{5}}

Evaluate the function at the point: \left(f\left(2\right)\right)^{\prime \prime \prime \prime }=\frac{56}{81}

Apply the Taylor series definition:

f\left(x\right)\approx\frac{\frac{7}{3}}{0!}\left(x-\left(2\right)\right)^{0}+\frac{- \frac{7}{9}}{1!}\left(x-\left(2\right)\right)^{1}+\frac{\frac{14}{27}}{2!}\left(x-\left(2\right)\right)^{2}+\frac{- \frac{14}{27}}{3!}\left(x-\left(2\right)\right)^{3}+\frac{\frac{56}{81}}{4!}\left(x-\left(2\right)\right)^{4}

The first four nonzero terms of the Taylor series of \frac{7}{x + 1} around a=2 are:

f\left(x\right)\approx P\left(x\right) = \frac{7}{3}- \frac{7}{9}\left(x-2\right)+\frac{7}{27}\left(x-2\right)^{2}- \frac{7}{81}\left(x-2\right)^{3}+\frac{7}{243}\left(x-2\right)^{4}

You might be interested in
Hi I need this asap if you also explain the work on how you got answers plz and thank you<br>​
weeeeeb [17]

Answer:

<u>Q/ Draw a line ; Ans; </u>

\frac{9}{5}  —>1 \frac{4}{5}

*explain ; We put the 5 in the denominator and 5 multiply 1 + 4 so equal 9 so the choice 9/5 .

Ans; 7/3—> 2 1/3

*explain ; We put the 3 in the denominator and 3 multiply 2 + 1 so equal 7 so the choice 7/3 .

Ans; 12/10 —> 1 1/5

*explain; simple (12 and 10) ÷ 2 so equal 6/5

We put the 5 in the denominator and 5 multiply 1 + 1 so equal 6 so the choice 6/5 =12/10 .

\frac{12 \div 2}{10 \div 2}  =  \frac{6}{5}  = 1 \frac{1}{5}

<u>Q/ Compare the fractions;Ans;</u>

\frac{2}{3}  <  \frac{14}{6}

* explain; 2/3 = 0.66 and 14/6=2.33 so 2.33 greater from 0.66 so 14/6 greater from 2/3 .

\frac{3}{8}  <  \frac{8}{3}

* explain; 3/8 = 0.375 and 8/3=2.666 so 2.666 greater from 0.375 so 8/3 greater from 3/8 .

2  \frac{1}{6}  >  \frac{5}{9}

* explain; 2 1/6 —> We put the 6 in the denominator and 6 multiply 2 + 1 so equal 13 so equal 13/6

13/6 = 2.16 and 5/9=0.55 so 2.16 greater from 0.55 so 13/6 = 2 1/6 greater from 5/9 .

<u>Q/Add; Ans;</u>

\frac{7}{8}  +  \frac{5}{8}  =  \frac{7 + 5}{8}  =  \frac{12}{8}  =  \frac{3}{2}

\frac{1}{9}  +  \frac{2}{3}  \\  \\  \frac{1}{9}  +  \frac{6}{9}  =  \frac{ 1+6 }{9}  =  \frac{7}{9}

<u>Q/Subtract; Ans;</u>

\frac{6}{7}  -  \frac{4}{7}  =  \frac{6 - 4}{7}  =  \frac{2}{7}

\frac{7}{3}  -  \frac{2}{9}  \\  \\  \frac{21}{9}  -  \frac{2}{9}  =  \frac{21 - 2}{9}  =  \frac{19}{9}

<u>Q/ Multiply;Ans;</u>

\frac{1}{5}  \times  \frac{1}{2}  =  \frac{1}{10}

\frac{2}{3}  \times  \frac{3}{8}  =  \frac{6}{24}  =  \frac{1}{4}

<u>Q/Divide;Ans;</u>

\frac{3}{4}  \div  \frac{2}{5}  \\  \\  \frac{3}{4}  \times  \frac{5}{2}  =  \frac{15}{8}

\frac{8}{9}  \div  \frac{1}{3}  \\  \\  \frac{8}{9}  \times  \frac{3}{1} =   \frac{24}{9}  =  \frac{8}{3}

I hope I helped you^_^

5 0
3 years ago
(2x+3y) + (5x+3y) = 4 +-8
Artist 52 [7]

Answer:

Step-by-step explanation:

6 0
3 years ago
I don't know how to take the situation and make it into a slope and y intersection
Juliette [100K]
How much money in the account? that piece is a bit cut out
3 0
3 years ago
Add or subtract. (3/x-2)+(4/x+5)
Alex787 [66]
The answer is 7x+7/x^2+3x-10
3 0
3 years ago
Use the table below to make a scatter plot of the data pairs (years since 1960, population) PLEASE HELP
Tpy6a [65]

Take 1960 as 0 then find out next year's

  • 1970=10
  • 1980=20
  • 1990=30
  • 2000=40
  • 2005=45
  • 2010=50

Also

Divide each population by one thousand i.e turn to decimal .

This we done to create the plot on graph easily

The graph has been attached

for the below points

  • (0,9.706)
  • (10,10.652)
  • (20,10.798)
  • (30,10.847)
  • (40,11.353)
  • (45,11.478)
  • (50,11.576)

7 0
2 years ago
Read 2 more answers
Other questions:
  • The depth of the Challenge Deep is 36,198 feet. How deep is it in fathoms and leagues (marines) (Round to the nearest hundredth.
    12·1 answer
  • -<br> 7 - 9 = 7+(-9)<br> Add.
    11·2 answers
  • Write an equation of the line through (6,-5) having slope 0. Give the answer in standard form.
    7·1 answer
  • 1
    8·1 answer
  • U<br> Question 8<br> Find the value of the variable in the parallelogram.<br> (6a + 10)<br> 130°
    7·1 answer
  • I forgot what 25 divided by 12 is lol pls help me
    9·1 answer
  • Find BC if B (8,-7) and C (-4,-2)
    14·1 answer
  • Pls help u dont have to explain that much​
    11·1 answer
  • Square root 9x+7 + square root2x=7
    5·1 answer
  • 4 = (8, 2)<br> y =(-1,-3)
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!