You need to find what 11% of 4 2/5 is.
You can convert 4 2/5 to 4.4 and 11% to .11
Then just multiply them together
4.4 * .11 = your answer
Ohh wow nice, do your own work lazy person
Answer:
a) 6.68th percentile
b) 617.5 points
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean and standard deviation , the zscore of a measure X is given by:
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:
a) A student who scored 400 on the Math SAT was at the ______ th percentile of the score distribution.
has a pvalue of 0.0668
So this student is in the 6.68th percentile.
b) To be at the 75th percentile of the distribution, a student needed a score of about ______ points on the Math SAT.
He needs a score of X when Z has a pvalue of 0.75. So X when Z = 0.675.