1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
amid [387]
2 years ago
10

What do you wish you had learned is Digital Citizenship class?

Physics
1 answer:
nydimaria [60]2 years ago
7 0

Answer:

I wish I learned what I could do in the real world with the information I learned

Explanation:

You might be interested in
What effect does the vertical acceleration have on the horizontal velocity of the projectile?
KengaRu [80]
Answer:
None, if air resistance is ignored.

Explanation:
At any instant, the projectile has vertical and horizontal components of velocity.
Vertical acceleration due to gravity affects the vertical velocity by accelerating the object toward the center of the earth, and by decreasing the upward vertical velocity.. 
The horizontal component of velocity makes the object travel horizontally as long as the projectile is airborne.
Thsi discussion assumes that air resistance is ignored.
3 0
3 years ago
Convert the speed of light, 3.0 x 108 m/s, to km/s.
zhuklara [117]

Answer:

Answer:

I don't know

Explanation:

I don't know

Explanation:

Answer:

I don't know

Explanation:

I don't know

3 0
3 years ago
Which of the following is an example of a noninfectious disease?
Scorpion4ik [409]
D lung cancer is not infectious
3 0
2 years ago
Read 2 more answers
A ball rolls down the hill which has a vertical height of 15 m. Ignoring friction what would be the gravitational potential ener
trasher [3.6K]

a) Potential energy: 147 m [J]

The gravitational potential energy of an object is given by

U=mgh

where

m is its mass

g=9.8 m/s^2 is the acceleration of gravity

h is the height of the object above the ground

In this problem,

h = 15 m

We call 'm' the mass of the ball, since we don't know it

So, the potential energy of the ball at the top of the hill is

U=(m)(9.8)(15)=147 m (J)

b) Velocity of the ball at the bottom of the hill: 17.1 m/s

According to the law of conservation of energy, in absence of friction all the potential energy of the ball is converted into kinetic energy as the ball reaches the bottom of the hill. Therefore we can write:

U=K=\frac{1}{2}mv^2

where

v is the final velocity of the ball

We know from part a) that

U = 147 m

Substituting into the equation above,

147 m = \frac{1}{2}mv^2

And re-arranging for v, we find the velocity:

v=\sqrt{2\cdot 147}=17.1 m/s

5 0
3 years ago
Water (density = 1x10^3 kg/m^3) flows at 15.5 m/s through a pipe with radius 0.040 m. The pipe goes up to the second floor of th
RUDIKE [14]

Answer:

The speed of the water flow in the pipe on the second floor is approximately 13.1 meters per second.

Explanation:

By assuming that fluid is incompressible and there are no heat and work interaction through the line of current corresponding to the pipe, we can calculate the speed of the water floor in the pipe on the second floor by Bernoulli's Principle, whose model is:

P_{1} + \frac{\rho\cdot v_{1}^{2}}{2}+\rho\cdot g\cdot z_{1} = P_{2} + \frac{\rho\cdot v_{2}^{2}}{2}+\rho\cdot g\cdot z_{2} (1)

Where:

P_{1}, P_{2} - Pressures of the water on the first and second floors, measured in pascals.

\rho - Density of water, measured in kilograms per cubic meter.

v_{1}, v_{2} - Speed of the water on the first and second floors, measured in meters per second.

z_{1}, z_{2} - Heights of the water on the first and second floors, measured in meters.

Now we clear the final speed of the water flow:

\frac{\rho\cdot v_{2}^{2}}{2} = P_{1}-P_{2}+\rho \cdot \left[\frac{v_{1}^{2}}{2}+g\cdot (z_{1}-z_{2}) \right]

\rho\cdot v_{2}^{2} = 2\cdot (P_{1}-P_{2})+\rho\cdot [v_{1}^{2}+2\cdot g\cdot (z_{1}-z_{2})]

v_{2}^{2}= \frac{2\cdot (P_{1}-P_{2})}{\rho}+v_{1}^{2}+2\cdot g\cdot (z_{1}-z_{2})

v_{2} = \sqrt{\frac{2\cdot (P_{1}-P_{2})}{\rho}+v_{1}^{2}+2\cdot g\cdot (z_{1}-z_{2}) } (2)

If we know that P_{1}-P_{2} = 0\,Pa, \rho=1000\,\frac{kg}{m^{3}}, v_{1} = 15.5\,\frac{m}{s}, g = 9.807\,\frac{m}{s^{2}} and z_{1}-z_{2} = -3.5\,m, then the speed of the water flow in the pipe on the second floor is:

v_{2}=\sqrt{\left(15.5\,\frac{m}{s} \right)^{2}+2\cdot \left(9.807\,\frac{m}{s^{2}} \right)\cdot (-3.5\,m)}

v_{2} \approx 13.100\,\frac{m}{s}

The speed of the water flow in the pipe on the second floor is approximately 13.1 meters per second.

4 0
2 years ago
Other questions:
  • There is a go cart being driven with a momentum of 4500 kgm/s. If the cart's
    12·2 answers
  • Cheryl has a mug that she says is made up of matter. Heather says that the hot chocolate inside the cup is made up of matter, to
    6·1 answer
  • Identify the two pieces of information you need to know the velocity of an object
    15·1 answer
  • An 8 Ω resistor is connected to a battery. The current that flows in the circuit is 2 A. Calculate the voltage of the battery.
    6·1 answer
  • Electric power in a circuit is the rate at which _________.
    6·1 answer
  • Please help with this question​
    9·2 answers
  • Which statement is true for objects in dynamic equilibrium?
    14·2 answers
  • A student moves a box across the floor by exerting 56.7 N of force and doing 195 J of
    13·1 answer
  • 35 POINTS
    14·1 answer
  • A 2-f and a 1-f capacitor are connected in series and a voltage is applied across the combination. the 2-f capacitor has:_______
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!