Answer:
D. Metallic atoms have valence shells that are mostly empty, which
means these atoms are more likely to give up electrons and allow
them to move freely.
Explanation:
Metals usually contain very few electrons in their valence shells hence they easily give up these few valence electrons to yield metal cations.
In the metallic bond, metal cations are held together by electrostatic attraction between the metal ions and a sea of mobile electrons.
Since metals give up their electrons easily, it is very easy for them to participate in metallic bonding. They give up their electrons easily because their valence shells are mostly empty, metal valence shells usually contain only a few electrons.
Answer:
22,800 years
Explanation:
Half life equation:
A = A₀ (½)^(t / T)
where A is the final amount,
A₀ is the initial amount,
t is time,
and T is the half life.
0.0625 = (½)^(t / 5700)
log 0.0625 = (t / 5700) log 0.5
4 = t / 5700
t = 22,800
It takes 22,800 years.
Here is the answer to your question
Answer:
x=4.06m
Explanation:
A body that moves with constant acceleration means that it moves in "a uniformly accelerated movement", which means that if the velocity is plotted with respect to time we will find a line and its slope will be the value of the acceleration, it determines how much it changes the speed with respect to time.
When performing a mathematical demonstration, it is found that the equations that define this movement are as follows.
Vf=Vo+a.t (1)\\\\
{Vf^{2}-Vo^2}/{2.a} =X(2)\\\\
X=Xo+ VoT+0.5at^{2} (3)\\
Where
Vf = final speed
Vo = Initial speed
T = time
A = acceleration
X = displacement
In conclusion to solve any problem related to a body that moves with constant acceleration we use the 3 above equations and use algebra to solve
for this problem
Vf=7.6m/s
t=1.07
Vo=0
we can use the ecuation number one to find the acceleration
a=(Vf-Vo)/t
a=(7.6-0)/1.07=7.1m/s^2
then we can use the ecuation number 2 to find the distance
{Vf^{2}-Vo^2}/{2.a} =X
(7.6^2-0^2)/(2x7.1)=4.06m