Explanation:
You need two, maybe three things - something that's vibrating, a medium for those vibrations to propagate in, and a listener to hear it or recording equipment to pick it up
V = [4/3]π r^3 => [dV / dr ] = 4π r^2
[dV/dt] = [dV/dr] * [dr/dt]
[dV/dt] = [4π r^2] * [ dr/ dt]
r = 60 mm, [dr / dt] = 4 mm/s
[dV / dt ] = [4π(60mm)^2] * 4mm/s = 180,955.7 mm/s
Answer:
b
Explanation:
the gravitational pull also helps with that but
<span>The metric
system is the oldest name for the international system of units. The answer is <u>a.
True. </u>SI unit or the international systems of units are based on seven
basic units; the meter, kilogram, second, ampere, Kelvin, candela and mole. All
of these basic units are divided into multiples by a power of ten. For example
in meters, 1 meter is equal to: 1000 millimeter, 100 centimeter, 10 decimeter,
0.1 decameter, 0.01 hectometer, 0.001 kilometer and so on and so forth.</span>
Answer:
Given a tube of diameter d, = 3cm = 0.03m
Pressure Balance
Mercury pressure at the tube bottom Pₓ = Pa + ρgh
where
Pa = Atmospheric pressure = 101kpa
ρ = Density of mercury = 13,546kg/m3
g = acceleration due to gravity
h = height of the tube?
Given
Bottom pressure in excess of the atmospheric pressure = 48kPa = Pₓ - Pa
Therefore, 48kPa = ρgh
h = 48(kN/m2)/ρg
h = 48,000kgms⁻²m⁻²/(13546kgm⁻³ x 9.81ms⁻²)
h = 0.36m
the tube is 36cm tall