Answer:
53
Explanation:
Because there are 1609.34 meters in a mile. 1609.34÷30=53.64 but because you put one at the beginning of the mile it will stay 53 and not round up to 54
The lowest energy of electron in an infinite well is 1.2*10^-33J.
To find the answer, we have to know more about the infinite well.
<h3>What is the lowest energy of electron in an infinite well?</h3>
- It is given that, the infinite well having a width of 0.050 mm.
- We have the expression for energy of electron in an infinite well as,


- Thus, the lowest energy of electron in an infinite well is,

Thus, we can conclude that, the lowest energy of electron in an infinite well is 1.2*10^-33J.
Learn more about the infinite well here:
brainly.com/question/20317353
#SPJ4
Answer:
The value is 
Explanation:
From the question we are told that
The molar mass of hydrazine is 
The initial temperature is 
The final temperature is 
The specific heat capacity is ![c_h = 0.099 [kJ/(mol K)] = 0.099 *10^3 J/(mol/K)](https://tex.z-dn.net/?f=c_h%20%20%3D%20%200.099%20%5BkJ%2F%28mol%20K%29%5D%20%3D%200.099%20%2A10%5E3%20J%2F%28mol%2FK%29)
The power available is 
The mass of the fuel is 
Generally the number of moles of hydrazine present is

=> 
=> 
Generally the quantity of heat energy needed is mathematically represented as
=>
=>
Generally the time taken is mathematically represented as

=> 
=> t = 2480505.6377 s
Converting to hours

=> 
Using the equation E = hc/λ we can find out how much energy a single photon of wavelength 193 nm has. E = Planck Constant * Speed of Light/193 nm