Answer:
The angle of launch of the rubber band affects the initial velocity. The more the rubber band is stretched the more force it applies to return to equilibrium and the more kinetic energy that results in.
Answer:
The following explanatory section gives an explanation of this question.
Explanation:
- This means that perhaps the bubble moves more than a certain duration throughout the calibration breath meter offers the rate as well as oxygenation consumed inside this cell.
- Inside that respirometer, oscillation of something like the bubble gave a technique of multiplying the quantity of oxygenation that is used by the seedlings mostly through cell membrane breathing.
Answer:
The answer to your question is: 20
Explanation:
Atomic number is the number of proton and atom has. Each element has a specific number of protons, if the number of protons change, then this is a new element.
Mass number is the number of protons and neutrons and atom has.
Mass number = protons + neutrons
Data
Number of protons = ?
Atomic number = 20
Then,
atomic number = number of protons = 20
Answer:
The final velocity of the object is 330 m/s.
Explanation:
To solve this problem, we first must find the acceleration of the object. We can do this using Newton's Second Law, given by the following equation:
F = ma
If we plug in the values that we are given in the problem, we get:
42 = 7 (a)
To solve for a, we simply divide both sides of the equation by 7.
42/7 = 7a/7
a = 6 m/s^2
Next, we should write out all of the information we have and what we are looking for.
a = 6 m/s^2
v1 = 0 m/s
t = 55 s
v2 = ?
We can use a kinematic equation to solve this problem. We should use:
v2 = v1 + at
If we plug in the values listed above, we should get:
v2 = 0 + (6)(55)
Next, we should solve the problem by performing the multiplication on the right side of the equation.
v2 = 330 m/s
Therefore, the final velocity reached by the object is 330 m/s.
Hope this helps!
Answer:
The gravitational force is definitely acting downwards towards the ground and this is equal to the weight of the skydiver.
the acceleration a = 7.8 m/s²
Explanation:
Given that :
the mass of the skydiver = 60 kg
Velocity = 50 m/s
Thus; gravitational force is definitely acting downwards towards the ground and this is equal to the weight of the skydiver.
Also; the air resistance is acting upward and the resultant of both forces = mass×acceleration
So;
mg-R = ma
60(9.8) - 120 = 60(a)
588 -120 = 60a
468 = 60a
a = 
a = 7.8 m/s²
Hence, the acceleration a = 7.8 m/s²