Out of the given options, weight is influenced by mass and gravity
Answer: Option A
<u>Explanation:
</u>
The object's mass is defined as the quantity of a matter with which the object is formed. It can change its state of matter but the quantity will remain the same. However, the weight is defined as how much force gravity exerts on the object's mass to pull it.
The mass is always same irrespective the location but the weight may vary from one place to the other while talking for the bigger picture. For example, the object's weight may be 60 kg on Earth but when it is measured on the moon, it will be lesser.
The weight of an object generally has nothing doing with the volume and it doesn't depend solely on the gravitational pull. The mass plays a crucial role.

None of the choices is correct.
If two runners take the same amount of time to run a mile,
they have the same average speed. But their velocities
are not the same unless both runners begin and end their
run at the same points.
Speed is (distance covered) divided by (time to cover the distance).
Velocity is not. It's something different.
'Velocity' is not just a bigger word for 'speed'.
Sweat is slightly acidic which helps to protect the body.
<em>(Please mark this answer as Brainliest and leave a Thanks if I helped you!)</em>
Answer: C. Metal transfers heat away from the skin by conduction, creating the sensation of coolness.
Explanation: The skin releases heat into the metal bowl since there is a difference in temperature between the two objects. So heat is taken away from the hand abd transfers into the metal bowl by conduction creating a cooler sensation.
Answer:
2081.65 m
Explanation:
We'll begin by calculating the time taken for the load to get to the target. This can be obtained as follow:
Height (h) = 3000 m
Acceleration due to gravity (g) = 10 m/s²
Time (t) =?
h = ½gt²
3000 = ½ × 10 × t²
3000 = 5 × t²
Divide both side by 5
t² = 3000 / 5
t² = 600
Take the square root of both side
t = √600
t = 24.49 s
Finally, we shall determine the distance from the target at which the load should be released. This can be obtained as follow:
Horizontal velocity (u) = 85 m/s
Time (t) = 24.49 s
Horizontal distance (s) =?
s = ut
s = 85 × 24.49
s = 2081.65 m
Thus, the load should be released from 2081.65 m.