For the one on the left they are corresponding and on the right they are vertical
Answer:yes
Step-by-step explanation: it represents a function
The area between the two functions is 0
<h3>How to determine the area?</h3>
The functions are given as:
f₁(x)= 1
f₂(x) = |x - 2|
x ∈ [0, 4]
The area between the functions is
A = ∫[f₂(x) - f₁(x) ] dx
The above integral becomes
A = ∫|x - 2| - 1 dx (0 to 4)
When the above is integrated, we have:
A = [(|x - 2|(x - 2))/2 - x] (0 to 4)
Expand the above integral
A = [(|4 - 2|(4 - 2))/2 - 4] - [(|0 - 2|(0 - 2))/2 - 0]
This gives
A = [2 - 4] - [-2- 0]
Evaluate the expression
A = 0
Hence, the area between the two functions is 0
Read more about areas at:
brainly.com/question/14115342
#SPJ1
Answer:
It can be determined if a quadratic function given in standard form has a minimum or maximum value from the sign of the coefficient "a" of the function. A positive value of "a" indicates the presence of a minimum point while a negative value of "a" indicates the presence of a maximum point
Step-by-step explanation:
The function that describes a parabola is a quadratic function
The standard form of a quadratic function is given as follows;
f(x) = a·(x - h)² + k, where "a" ≠ 0
When the value of part of the function a·x² after expansion is responsible for the curved shape of the function and the sign of the constant "a", determines weather the the curve opens up or is "u-shaped" or opens down or is "n-shaped"
When "a" is negative, the parabola downwards, thereby having a n-shape and therefore it has a maximum point (maximum value of the y-coordinate) at the top of the curve
When "a" is positive, the parabola opens upwards having a "u-shape" and therefore, has a minimum point (minimum value of the y-coordinate) at the top of the curve.
Answer: 91.71%
Step-by-step explanation:
146 is 91.708542713568% of 159.2.
Steps:
146 ÷ 159.2 = 0.91708542713568 = 91.708542713568%
Simply
91.71
Hope this helps!!! Good luck!!! ;)