Answer:
5,789
Step-by-step explanation:
I got 5,789 because there are 9 one digit numbers. 1-9 -> 9x1=9. There are 90 two digit numbers. (10-99)-> 90x2=180. There are 900 three digit numbers. (100-999)-> 900x3=2700. There are 725 four digit numbers. (1000-1724)-> 724x4= 2900. Then, I added 9+180+2700+2900=5789.
In conclusion, the total number of digits required in numbering a book that has 1724 pages is 5789.
Here is the set up:
(1/4)/2 = (9/4)/y
Solve for y.
Answer:
$ 0.8.
Step-by-step explanation:
1) if to assume, 'c' - price of the coffee and 'd' - price of the doughnuts, then
2) it is possible to write the equation 1 (when five MinB enter): 3d+5c=3.3;
3) it is possible to write the equation 2 (when three aliens entered): 4d+3c=2.75;
![4) \ \left \{ {{3d+5c=3.3} \atop {4d+3c=2.75}} \right. \ = > \ \left \{ {{c=0.45} \atop {d=0.35}} \right.](https://tex.z-dn.net/?f=4%29%20%5C%20%5Cleft%20%5C%7B%20%7B%7B3d%2B5c%3D3.3%7D%20%5Catop%20%7B4d%2B3c%3D2.75%7D%7D%20%5Cright.%20%5C%20%3D%20%3E%20%5C%20%5Cleft%20%5C%7B%20%7B%7Bc%3D0.45%7D%20%5Catop%20%7Bd%3D0.35%7D%7D%20%5Cright.)
5) if c=0.45 and d=0.35, then Ag.Z. paid 0.35+0.45=$ 0.8.
Y=mx+b, m= slope, b= y intercept, plug in. Y=3x+5