b + p = 14 and 0.80 b + 2 p = 20.80 are the system of equations.
Step-by-step explanation:
Step 1 :
Let b be the number of bananas
Let p be the number of peaches
Given that the total of bananas and peaches that Emily bought = 14
Hence we have,
b + p = 14
Step 2 :
Cost of one banana = $0.80
Cost of one peach = $2
Cost of all the bananas and peaches Emily bought = $20.80
So sum of b bananas costing $0.80 and sum of p peaches costing $2 each is $20.80
Hence we have
0.80 b +2 p = 20.80
Solving for the above 2 equations we can get the value for b and p which will give the number of bananas and peaches bought
Step 3 :
Answer :
The system of equations that could be used to find the number of the bananas and the number of the peaches that Emily bought is given by
b + p = 14
0.80 b +2 p = 20.80
The area of this composite figure is 533 square inches.
The formula for a rectangle is lw, and the formula for the area of a triangle is 1/2bh. After plugging the values into these formulas, we have to add the values all together to get the final area.
Answer:
C. between 5 and 6 days
Step-by-step explanation:
divide 1611 by 305 and the answer is 5.28196721311. meaning it will take a little over 5 days to get to wherever he is going.
Answer:
How many drinks should be sold to get a maximal profit? 468
Sales of the first one = 345 cups
Sales of the second one = 123 cups
Step-by-step explanation:
maximize 1.2F + 0.7S
where:
F = first type of drink
S = second type of drink
constraints:
sugar ⇒ 3F + 10S ≤ 3000
juice ⇒ 9F + 4S ≤ 3600
coffee ⇒ 4F + 5S ≤ 2000
using solver the maximum profit is $500.10
and the optimal solution is 345F + 123S