Do the decimals division 99/6 so you will get 16.5
Answer:
Following are the solution to the given points:
Step-by-step explanation:
Please find the complete question in the attached file.
In this question, we assume that "x" denotes as an actual time of the battery charging, that is a uniform random variable that
In point a:
so, pdf of x =
In point b:
To find

In point c:

In point d:

The answer to this problem would be -22
Part a)
Answer: 5*sqrt(2pi)/pi
-----------------------
Work Shown:
r = sqrt(A/pi)
r = sqrt(50/pi)
r = sqrt(50)/sqrt(pi)
r = (sqrt(50)*sqrt(pi))/(sqrt(pi)*sqrt(pi))
r = sqrt(50pi)/pi
r = sqrt(25*2pi)/pi
r = sqrt(25)*sqrt(2pi)/pi
r = 5*sqrt(2pi)/pi
Note: the denominator is technically not able to be rationalized because of the pi there. There is no value we can multiply pi by so that we end up with a rational value. We could try 1/pi, but that will eventually lead back to having pi in the denominator. I think your teacher may have made a typo when s/he wrote "rationalize all denominators"
============================================================
Part b)
Answer: 3*sqrt(3pi)/pi
-----------------------
Work Shown:
r = sqrt(A/pi)
r = sqrt(27/pi)
r = sqrt(27)/sqrt(pi)
r = (sqrt(27)*sqrt(pi))/(sqrt(pi)*sqrt(pi))
r = sqrt(27pi)/pi
r = sqrt(9*3pi)/pi
r = sqrt(9)*sqrt(3pi)/pi
r = 3*sqrt(3pi)/pi
Note: the same issue comes up as before in part a)
============================================================
Part c)
Answer: sqrt(19pi)/pi
-----------------------
Work Shown:
r = sqrt(A/pi)
r = sqrt(19/pi)
r = sqrt(19)/sqrt(pi)
r = (sqrt(19)*sqrt(pi))/(sqrt(pi)*sqrt(pi))
r = sqrt(19pi)/pi