Answer:
The factors of given expression are 10+10√2 and 10-10√2.
Step-by-step explanation:
We have given a quadratic expression.
s²-20s-100
We have to find factors of given expression.
We use quadratic formula to find factors.
x = (-b±√b²-4ac) / 2a
From given expression, a = 1 , b = -20 and c = -100
Putting values in above formula, we have
x = (-(-20)±√(-20)²-4(1)(-100) ) / 2(1)
x = (20±√400+400 ) / 2
x = (20±√800) / 2
x = (20± √400×2) / 2
x = (20±20√2) / 2
x = 10±10√2
Hence, the factors of given expression are 10+10√2 and 10-10√2.
Answer:
It can never be a prime number.
Step-by-step explanation:
This is because the product of the two prime numbers are divisible by those two numbers, therefore going against the definition of a prime number. For example 3 and 5 are prime numbers and their product is 15. 15 can be divided by 3 and 5 so it is not a prime number.
Hope this helps.
In order to determine whether the equations are parallel, perpendicular, or neither, let's simply each equation into a slope-intercept form or basically, solve for y.
Let's start with the first equation.

Cross multiply both sides of the equation.


Subtract 6x on both sides of the equation.


Divide both sides of the equation by -5.


Therefore, the slope of the first equation is 4/5.
Let's now simplify the second equation.

Add x on both sides of the equation.


Divide both sides of the equation by -4.


Therefore, the slope of the second equation is -5/4.
Since the slope of each equation is the negative reciprocal of each other, then the graph of the two equations is perpendicular to each other.