If 2 ma of current flow in your mp3 player, 8.3 mins or 500 sec will take for 1 c of charge to flow.
Electric Charge
Charged material experiences a force when it is exposed to an electromagnetic field due to the physical property of electric charge. You can have a positive or negative electric charge (commonly carried by protons and electrons respectively). Unlike charges attract one another while like charges repel one another. Neutral refers to an object that carries no net charge. Classical electrodynamics, the name given to an early understanding of how charged particles interact, is still accurate for issues that do not call for taking into account quantum phenomena.
The coulomb (C), which bears the name of French physicist Charles-Augustin de Coulomb, is the SI-derived unit of electric charge. The charge symbol, lowercase q, is frequently used.
To learn more about the electric charge refer here:
brainly.com/question/9194793
#SPJ4
The force of the atmosphere aka gravity acting upon the object
Answer:
(a): 
(b): 
Explanation:
<u>Given:</u>
- Charge on one sphere,

- Charge on second sphere,

- Separation between the spheres,

Part (a):
According to Coulomb's law, the magnitude of the electrostatic force of interaction between two static point charges is given by

where,
k is called the Coulomb's constant, whose value is 
From Newton's third law of motion, both the spheres experience same force.
Therefore, the magnitude of the force that each sphere experiences is given by

The negative sign shows that the force is attractive in nature.
Part (b):
The spheres are identical in size. When the spheres are brought in contact with each other then the charge on both the spheres redistributes in such a way that the net charge on both the spheres distributed equally on both.
Total charge on both the spheres, 
The new charges on both the spheres are equal and given by

The magnitude of the force that each sphere now experiences is given by
Answer:
1.55 m
Explanation:
The potential produced by a point charge, is inversely proportional to the distance from the charge to the point where the potential is being calculated, as follows:

As it only depends from the distance r, we can conclude that if the potential is the same for any point to a distance r from the point charge, the equipotencial surface must be a sphere of radius r.
Replacing q = +1.7*10⁻⁸ C, and k = 9*10⁹ N*m²/C², and V, by 120 V and 54 V, we can find the distance from the charge, to the points where we are calculating the potential V, as follows:


The distance between both points, is just the difference between the radius of both spheres, as follows:
r₂ - r₁ = 1.55 m