Answer:
Yes
Explanation:
The given parameters are;
The speed with which the fastball is hit, u = 49.1 m/s (109.9 mph)
The angle in which the fastball is hit, θ = 22°
The distance of the field = 96 m (315 ft)
The range of the projectile motion of the fastball is given by the following formula

Where;
g = The acceleration due to gravity = 9.81 m/s², we have;

Yes, given that the ball's range is larger than the extent of the field, the batter is able to safely reach home.
Answer:
angular speed = 0.4 rad/s
Explanation:
given data
radius = 5 m
moment of inertia = 2000 kg-m²
angular speed = 1.0 rad/s
mass = 60 kg
to find out
angular speed
solution
Rotational momentum of merry-go-round = I?
we get here momentum that is express as
momentum = 2000 × 1
momentum = 2000 kg-m²/s
and
Inertia of people will be here as
Inertia of people = mr² = 60 × 5²
Inertia of people = 1500 kg-m²
so Inertia of people for two people
1500 × 2 = 3000
and
now conserving angular momentum(ω)
moment of inertia × angular speed = ( momentum + Inertia of people ) angular momentum
2000 × 1 = (2000 + 3000 ) ω
solve we get now
ω = 0.4 rad/s
The solution for this problem is:
Let u denote speed.
Equating momentum before and after collision:
= 0.060 * 40 = (1.5 + 0.060) u
= 2.4 = 1.56 u
= 2.4 / 1.56 = 1.56 u / 1.56
= 1.6 m / s is the answer for this question. This is the speed after the collision.
ANSWER:
F(h)= 230 N is the horizontal force you will need to move the pickup along the same road at the same speed.
STEP-BY-STEP EXPLANATION:
F(h) is Horizontal Force = 200 N
V is Speed = 2.4 m/s
The total weight increase by 42%
coefficient of rolling friction decrease by 19%
Since the velocity is constant so acceleration is zero; a=0
Now the horizontal force required to move the pickup is equal to the frictional force.
F(h) = F(f)
F(h) = mg* u
m is mass
g is gravitational acceleration = 9.8 m/s^2
200 = mg*u
Since weight increases by 42% and friction coefficient decreases by 19%
New weight = 1+0.42 = 1.42 = (1.42*m*g)
New friction coefficient = μ = 1 - 0.19 = 0.81 = 0.81 u
F(h) = (0.81μ) (1.42 m g)
= (0.81) (1.42) (μ m g)
= (0.81) (1.42) (200)
= 230 N
Answer:
Fossil Combustion Reactions
Explanation:
It's more efficient (I'll edit later)