<span>speed of slower=x; distance in 6 hours is 6x
speed of larger=2x; distance in 6 hours is 12x
12x-6x=204 miles
</span><span> 6x=204
x=34 mph slower, 204 miles in 6 hours.
2x=68 mph, faster, 408 miles in 6 hours, and difference is 204 miles</span>
<span><u><em>A</em></u><em><u></u></em><em><u></u></em><u><em> long-lived, high-pressure storm on jupiter a place where reddish particles from io impact jupiter's surface</em></u></span><u><em> </em></u>
Answer:
The velocity of the cart at the bottom of the ramp is 1.81m/s, and the acceleration would be 3.30m/s^2.
Explanation:
Assuming the initial velocity to be zero, we can obtain the velocity at the bottom of the ramp using the kinematics equations:

Dividing the second equation by the first one, we obtain:

And, since
, then:

It means that the velocity at the bottom of the ramp is 1.81m/s.
We could use this data, plus any of the two initial equations, to determine the acceleration:

So the acceleration is 3.30m/s^2.
Work= force*distance
Work= x*12
Force= mass*acceleration
Force= 5 kg*6
Force= 40 N
Work= 40×12
Work= 480 J (joules)
I think this is it