Answer:
0.546 
Explanation:
From the given information:
The force on a given current-carrying conductor is:

where the length usually in negative (x) direction can be computed as

Now, taking the integral of the force between x = 1.0 m and x = 3.0 m to get the value of the force, we have:



![F = I (9.0) \bigg [\dfrac{x^3}{3} \bigg ] ^3_1 \hat k](https://tex.z-dn.net/?f=F%20%3D%20I%20%20%289.0%29%20%5Cbigg%20%5B%5Cdfrac%7Bx%5E3%7D%7B3%7D%20%5Cbigg%20%5D%20%5E3_1%20%5Chat%20k)
![F = I (9.0) \bigg [\dfrac{3^3}{3} - \dfrac{1^3}{3} \bigg ] \hat k](https://tex.z-dn.net/?f=F%20%3D%20I%20%20%289.0%29%20%5Cbigg%20%5B%5Cdfrac%7B3%5E3%7D%7B3%7D%20-%20%5Cdfrac%7B1%5E3%7D%7B3%7D%20%5Cbigg%20%5D%20%20%5Chat%20k)
where;
current I = 7.0 A
![F = (7.0 \ A) (9.0) \bigg [\dfrac{27}{3} - \dfrac{1}{3} \bigg ] \hat k](https://tex.z-dn.net/?f=F%20%3D%20%287.0%20%5C%20A%29%20%20%289.0%29%20%5Cbigg%20%5B%5Cdfrac%7B27%7D%7B3%7D%20-%20%5Cdfrac%7B1%7D%7B3%7D%20%5Cbigg%20%5D%20%20%5Chat%20k)
![F = (7.0 \ A) (9.0) \bigg [\dfrac{26}{3} \bigg ] \hat k](https://tex.z-dn.net/?f=F%20%3D%20%287.0%20%5C%20A%29%20%20%289.0%29%20%5Cbigg%20%5B%5Cdfrac%7B26%7D%7B3%7D%20%5Cbigg%20%5D%20%20%5Chat%20k)
F = 546 × 10⁻³ T/mT 
F = 0.546 
Answer:
Power= 6.84×10⁸ W
Explanation:
Given Data
Niagara falls at rate of=1.4×10⁶ kg/s
falls=49.8 m
To find
Power Generated
Solution
Regarding this problem
GPE (gravitational potential energy) declines each second is given from that you will find much the kinetic energy of the falling water is increasing each second.
So power can be found by follow
Power= dE/dt = d/dt (mgh)
Power= gh dm/dt
Power= 1.4×10⁶ kg/s × 9.81 m/s² × 49.8 m
Power= 6.84×10⁸ W
I think it is False
hope this helps :3
The answer is m/s hope it helps