Answer:
Step-by-step explanation:
C(0,0)
the length of AC is equal to BD
the length of BD is equal to AC
Answer:
D .8
Step-by-step explanation:
hypotenuse (h) = 10
base (b) = 6
perpendicular (p) = a= ?
We know by using Pythagoras theorem we get
p = √ h² - b²
a = √ 10² - 6²
a = √ 64
a = 8
Hope it will help :)
You're looking for the largest number <em>x</em> such that
<em>x</em> ≡ 1 (mod 451)
<em>x</em> ≡ 4 (mod 328)
<em>x</em> ≡ 1 (mod 673)
Recall that
<em>x</em> ≡ <em>a</em> (mod <em>m</em>)
<em>x</em> ≡ <em>b</em> (mod <em>n</em>)
is solvable only when <em>a</em> ≡ <em>b</em> (mod gcd(<em>m</em>, <em>n</em>)). But this is not the case here; with <em>m</em> = 451 and <em>n</em> = 328, we have gcd(<em>m</em>, <em>n</em>) = 41, and clearly
1 ≡ 4 (mod 41)
is not true.
So there is no such number.
Answer: 12-5d
because all you do is flip the expression
Answer:
2x - 10 = 10 - 3x
Simplifying
2x + -10 = 10 + -3x
Reorder the terms:
-10 + 2x = 10 + -3x
Solving
-10 + 2x = 10 + -3x
Solving for variable 'x'.
Move all terms containing x to the left, all other terms to the right.
Add '3x' to each side of the equation.
-10 + 2x + 3x = 10 + -3x + 3x
Combine like terms: 2x + 3x = 5x
-10 + 5x = 10 + -3x + 3x
Combine like terms: -3x + 3x = 0
-10 + 5x = 10 + 0
-10 + 5x = 10
Add '10' to each side of the equation.
-10 + 10 + 5x = 10 + 10
Combine like terms: -10 + 10 = 0
0 + 5x = 10 + 10
5x = 10 + 10
Combine like terms: 10 + 10 = 20
5x = 20
Divide each side by '5'.
x = 4
Simplifying
x = 4