Answer:
A
Step-by-step explanation:
hope this helped
Answer: B
Step-by-step explanation:
I got it right on Edge
Similarities: They both are polynomials of degree 2, both of their graphs is a parabola, both have either 2 or 0 real solutions, they are both continuous functions over R
(DOS= difference of two squares, PST=perfect square trinomial
Differences: PST has three terms, whereas the difference of squares has 2. PST's factors are both the same, whereas DOS's elements are conjugates of each other. DOS can always be factored into two distinct polynomials with rational coefficients, whereas PST has two same polynomial factors.
The vertex form of a quadratic function is:
f(x) = a(x - h)² + k
The coordinate (h, k) represents a parabola's vertex.
In order to convert a quadratic function in standard form to the vertex form, we can complete the square.
y = 2x² - 5x + 13
Move the constant, 13, to the other side of the equation by subtracting it from both sides of the equation.
y - 13 = 2x² - 5x
Factor out 2 on the right side of the equation.
y - 13 = 2(x² - 2.5x)
Add (b/2)² to both sides of the equation, but remember that since we factored 2 out on the right side of the equation we have to multiply (b/2)² by 2 again on the left side.
y - 13 + 2(2.5/2)² = 2(x² - 2.5x + (2.5/2)²)
y - 13 + 3.125 = 2(x² - 2.5x + 1.5625)
Add the constants on the left and factor the expression on the right to a perfect square.
y - 9.875 = 2(x - 1.25)²
Now, we need y to be by itself again so add 9.875 back to both sides of the equation to move it back to the right side.
y = 2(x - 1.25)² + 9.875
Vertex: (1.25, 9.875)
Solution: y = 2(x - 1.25)² + 9.875
Or if you prefer fractions
y = 2(x - 5/4)² + 79/8