Answer: Because it's a combination of chemicals, vodka doesn't freeze at the same temperature as either water or alcohol. Of course, vodka will freeze, but not at the temperature of an ordinary freezer. This is because vodka contains enough alcohol to lower the freezing point of water below the -17°C of your typical freezer.
Explanation: .......
Answer:
The calorimeter constant is = 447 J/°C
Explanation:
The heat absorbed or released (Q) by water can be calculated with the following expression:
Q = c × m × ΔT
where,
c is the specific heat
m is the mass
ΔT is the change in temperature
The water that is initially in the calorimeter (w₁) absorbs heat while the water that is added (w₂) later releases heat. The calorimeter also absorbs heat.
The heat absorbed by the calorimeter (Q) can be calculated with the following expression:
Q = C × ΔT
where,
C is the calorimeter constant
The density of water is 1.00 g/mL so 50.0 mL = 50.0 g. The sum of the heat absorbed and the heat released is equal to zero (conservation of energy).
Qabs + Qrel = 0
Qabs = - Qrel
Qcal + Qw₁ = - Qw₂
Qcal = - (Qw₂ + Qw₁)
Ccal . ΔTcal = - (cw . mw₁ . ΔTw₁ + cw . mw₂ . ΔTw₂)
Ccal . (30.31°C - 22.6°C) = - [(4.184 J/g.°C) × 50.0 g × (30.31°C - 22.6°C) + (4.184 J/g.°C) × 50.0 g × (30.31°C - 54.5°C)]
Ccal = 447 J/°C
Answer:
The hot water was better for removing the oil.
Explanation:
You can see that because the mass went down more with the hot water. So, that means that more oil was taken out of the feather with hot water.
Answer:
Protons and Neutrons are found in the nucleus