Answer: The final pressure is 34.48kPa
Initial Pressure P1 = 55.16kPa
Initial Volume V1 = 0.500L
Final Pressure P2 = ?
Final Volume V2 = 0.800L
Boyle's law P1V1 = P2 V2
P2 = P1V1/V2
P2 = 55.16*0.5/0.8
P2 = 34.48kPa
Your question isn’t typed right :(
Answer:
Option A. It has stayed the same.
Explanation:
To answer the question given above, we assumed:
Initial volume (V₁) = V
Initial temperature (T₁) = T
Initial pressure (P₁) = P
From the question given above, the following data were:
Final volume (V₂) = 2V
Final temperature (T₂) = 2T
Final pressure (P₂) =?
The final pressure of the gas can be obtained as follow:
P₁V₁/T₁ = P₂V₂/T₂
PV/T = P₂ × 2V / 2T
Cross multiply
P₂ × 2V × T = PV × 2T
Divide both side by 2V × T
P₂ = PV × 2T / 2V × T
P₂ = P
Thus, the final pressure is the same as the initial pressure.
Option A gives the correct answer to the question.
Fires affect animals mainly through effects on their habitat.
Answer:
B
Explanation:
Molarity = 0.010M
Volume = 2.5L
Applying mole-concept,
0.010mole = 1L
X mole = 2.5L
X = (0.010 × 2.5) / 1
X = 0.025moles
0.025moles is present in 2.5L of NaOH solution.
Molar mass of NaOH = (23 + 16 + 1) = 40g/mol
Number of moles = mass / molar mass
Mass = number of moles × molar mass
Mass = 0.025 × 40
Mass = 1g
1g is present in 2.5L of NaOH solution