Incomplete question. However, let's assume this are feasible regions to consider:
Points:
- (0, 100)
- (0, 125)
- (0, 325)
- (1, 200)
Answer:
<u>Maximum value occurs at 325 at the point (0, 325)</u>
<u>Step-by-step explanation:</u>
Remember, we substitute the points value for x, y in the objective function P = 2x + 1.5y.
- For point (0, 100): P= 2(0) + 1.5 (100) =150
- For point (0, 125): P= 2(0) + 1.5 (125) =187.5
For point (0, 325): P= 2(0) + 1.5 (325) = 487.5
For point (1, 200): P= 2(1) + 1.5 (200) = 302
Therefore, we could notice from the above solutions that at point (0,325) we attain the maximum value of P.
Answer:
4.624e+15
Step-by-step explanation:
I think this is the correct answer may be wrong
Answer:
26
Step-by-step explanation:
[(7+3)5-4]/2+3
-To solve this equation you have to use PEMDAS
P- Parentheses
E- Exponents
M- Multiplication
D- Division
A- Addition
S- Subtraction-
- With MD and AS you work left to right of the equation since they are in the same spot. (PE[MD][AS])
Step 1) [(10)5-4]/2+3
- First you do "P," parentheses, so you add 7+3=10
Step 2) [50-4]/2+3
- Next you do "M," multiplication, and multiply 10x5=50
Step 3) [46]/2+3
- Then you do "S," subtraction, and subtract 50-4=46
(FYI: Steps 1-3 were still in the parentheses. We had to start with the parentheses in the parentheses, work PEMDAS, and now we are out of the parentheses and have to work PEMDAS on the rest of the problem.)
Step 4) 23+3
- Now we do "D," division, and divide 46/2=23
Step 5) 23+3=6
- Finally we do "A," addition, and add 23+3=26 so the answer is 26
(FYI: "/" means division)