1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tester [92]
2 years ago
6

Please someone help me with the question

Mathematics
1 answer:
Yuki888 [10]2 years ago
8 0

Answer:

\displaystyle \frac{d}{dx}[e^{2x}] = 2e^{2x}

\displaystyle \frac{d}{dx}[e^{3x}] = 3e^{3x}

General Formulas and Concepts:

<u>Algebra I</u>

  • Terms/Coefficients
  • Exponential Rule [Multiplying]:                                                                      \displaystyle b^m \cdot b^n = b^{m + n}

<u>Calculus</u>

Derivatives

Derivative Notation

eˣ Derivative:                                                                                                           \displaystyle \frac{d}{dx}[e^x] = e^x

Derivative Rule [Product Rule]:                                                                                  \displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Step-by-step explanation:

<u>Step 1: Define</u>

<u />\displaystyle \frac{d}{dx}[e^{2x}] = \frac{d}{dx}[e^x \cdot e^x]<u />

<u />\displaystyle \frac{d}{dx}[e^{3x}] = \frac{d}{dx}[e^x \cdot e^{2x}]<u />

<u />

<u>Step 2: Differentiate</u>

<u />\displaystyle \frac{d}{dx}[e^{2x}]<u />

  1. [Derivative] Product Rule:                                                                              \displaystyle \frac{d}{dx}[e^{2x}] = \frac{d}{dx}[e^x]e^x + e^x\frac{d}{dx}[e^x]
  2. [Derivative] eˣ Derivative:                                                                               \displaystyle \frac{d}{dx}[e^{2x}] = e^x \cdot e^x + e^x \cdot e^x
  3. [Derivative] Multiply [Exponential Rule - Multiplying]:                                  \displaystyle \frac{d}{dx}[e^{2x}] = e^{2x} + e^{2x}
  4. [Derivative] Combine like terms [Addition]:                                                  \displaystyle \frac{d}{dx}[e^{2x}] = 2e^{2x}

\displaystyle \frac{d}{dx}[e^{3x}]

  1. [Derivative] Product Rule:                                                                              \displaystyle \frac{d}{dx}[e^{3x}] = \frac{d}{dx}[e^x]e^{2x} + e^x\frac{d}{dx}[e^{2x}]
  2. [Derivative] eˣ Derivatives:                                                                             \displaystyle \frac{d}{dx}[e^{3x}] = e^x(e^{2x}) + e^x(2e^{2x})
  3. [Derivative] Multiply [Exponential Rule - Multiplying]:                                  \displaystyle \frac{d}{dx}[e^{3x}] = e^{3x} + 2e^{3x}
  4. [Derivative] Combine like terms [Addition]:                                                  \displaystyle \frac{d}{dx}[e^{3x}] = 3e^{3x}

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Derivatives

Book: College Calculus 10e

You might be interested in
a 20 ft piece of string is cut into two pieces so that the longer piece is 5 feet longer than twice the shorter piece. If the sh
oee [108]
Longer piece is 15 and shorter piece is 5
5 0
3 years ago
6th grade math help me pleaseeee
Ilya [14]

Answer:

D :3 -Your friend, Bill Cipher

Step-by-step explanation:

4 0
3 years ago
Read 2 more answers
Help me pleasee !!!!
Daniel [21]

Answer:

here (edit I made a mistake)

Step-by-step explanation:

9) y=\frac{3}{5} x +5

10) y = x - 3

11)  y=-\frac{3}{5} x - 3

12) y=\frac{5}{4} x + 2

these are the slop int forms, my bad...

sorry

3 0
2 years ago
Read 2 more answers
The high school leadership team is having a car wash. They charge $5.50 for large cars and $4.00 for small cars . They had a suc
11Alexandr11 [23.1K]

Answer: 56 large cars and 86 small cars.

Step-by-step explanation:

Let's call:

l: the number of large cars.

s: the number of small cars.

Then, you can set up the following system of equations:

\left \{ {{l+s=142} \atop {5.50l+4.0s=652.50}} \right.

You can use the Elimination Method:

- Multiply the first equation by -4.0

- Add both equations.

- Solve for l.

\left \{ {{-4.0l-4.0s=-568} \atop {5.50l+4.0s=652.50}} \right.\\--------\\1.5l=84.5

l≈56

Substitute l=56 into one of the original equations and solve for <em>s:</em>

<em> </em>56+s=142\\s=142-56\\s=86

3 0
3 years ago
)Of the people in the theater, 5% have seen the movie before. If there are 8 people who have seen the movie before, how many peo
kakasveta [241]

Answer: 160

Step-by-step explanation: 5% of x = 8

In other words, x * 0.05 = 8. To find what x is, we need to work backwards.

x * 0.05 = 8

x = 8/0.05

x = 160

Would appreciate a brainly <3

3 0
2 years ago
Other questions:
  • Is 1 pint is equivalent to 0.473 liters??
    6·2 answers
  • Ebuka's monthly rent is
    7·2 answers
  • Ve a reason why an object with a base toppleasily the one with​
    14·1 answer
  • Solve the equation -8=-3-63x2
    15·1 answer
  • Algebra with pizzza pg 55 can anyone solve for 100 points
    8·1 answer
  • A five inch tall bamboo shoot doubles in height every three days. If the equation y=ab^x, where x is the number of doubling peri
    6·1 answer
  • MARKING BRAINLIEST ....loll
    11·1 answer
  • If T is the centroid of ∡MNP, TN = 16, MQ = 23, and RP = 18, find each missing measure.
    15·1 answer
  • Consider the first six terms<br> in the sequence -11,-4, 3, 10, 17,24
    12·1 answer
  • Which of the following is NOT an example of mixed fraction?
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!