The answer is B. 5.
There are five different types of cross sections of a cone possible.
Given that

, then

The slope of a tangent line in the polar coordinate is given by:

Thus, we have:

Part A:
For horizontal tangent lines, m = 0.
Thus, we have:

Therefore, the <span>values of θ on the polar curve r = θ, with 0 ≤ θ ≤ 2π, such that the tangent lines are horizontal are:
</span><span>θ = 0
</span>θ = <span>2.02875783811043
</span>
θ = <span>4.91318043943488
Part B:
For vertical tangent lines,

Thus, we have:

</span>Therefore, the <span>values of θ on the polar curve r = θ, with 0 ≤ θ ≤ 2π, such that the tangent lines are vertical are:
</span>θ = <span>4.91718592528713</span>
Answer:
the answer is stop cheating
Step-by-step explanation:
Speak english
Let

then you will have a^2-12a+36=0 and then you can just factor to find a
Answer:
p = 2
n = 14
m = 3
Step-by-step explanation:
In order to be able combine (either add or subtract) rational expressions we need to write them with a common (similar) denominator. For that reason we first find the Least Common Denominator of both fractions, that way understanding how to express the two fractions using equivalent fractions with like denominator that can be combined.
We see that the denominator of the first fraction contains the factor "x", therefore "x" has to be a factor of that least common denominator.
We also see that the second fraction contains "2" as a factor, therefore 2 has to be a factor as well for our Least Common Denominator (LCD)
So the LCD we need is the product: 2*x which we write as 2x.
Now we write the first fraction as an equivalent one but with denominator "2x" by multiplying top and bottom by 2 (and thus not changing the actual value of the fraction): 
Next we do the same with the second fraction, this time multiplying top and bottom by the factor "x":

Now that both fractions are written showing the same denominator , we can combine them as indicated:

This expression gives as then the values for the requested coefficients.
p = 2
n = 14
m = 3