The answer is D because using division you would find how many cups you need to sell.
Answer:
See below.
Step-by-step explanation:
Since sqrt(a) and sqrt(b) are in simplest radical form, that means a and b have no perfect square factors. When sqrt(a) and sqrt(b) are multiplied giving c * sqrt(d), the fact that c came out of the root means that there was c^2 inside the product sqrt(ab). This means that a and b have at least one common factor.
ab = c^2d
Example:
Let a = 6 and let b = 10.
sqrt(6) and sqrt(10) are in simplest radical form.
Now we multiply the radicals.
sqrt(a) * sqrt(b) = sqrt(6) * sqrt(10) = sqrt(60) = sqrt(4 * 15) = 2sqrt(15)
We have c = 2 and d = 15.
ab = c^2d
6 * 10 = 2^2 * 15
60 = 60
Our relationship between a, b and c, d works.
I think the pattern is that you multiply the first number by the second , then add the first number. SO:
e.g. for the first one 1 x 4 = 4 , 4 + 1 = 5
for the second one 2 x 5 = 10, 10 + 2 = 12...
So for 8+11:
you do 8 x 11 = 88 , 88 + 8 = 96
Answer:
The temperature from yesterday to today decreased by 12 degrees fahrenheit.
Step-by-step explanation:
Ummm... it's true :)
Answer:
Step-by-step explanation:
Here's the game plan. In order to find a point on the x-axis that makes AC = BC, we need to find the midpoint of AB and the slope of AB. From there, we can find the equation of the line that is perpendicular to AB so we can then fit a 0 in for y and solve for x. This final coordinate will be the answer you're looking for. First and foremost, the midpoint of AB:
and
Now for the slope of AB:
and
So if the slope of AB is 1/3, then the slope of a line perpendicular to that line is -3. What we are finding now is the equation of the line perpendicular to AB and going through (0, 3):
and filling in:
y - 3 = -3(x - 0) and
y - 3 = -3x + 0 and
y - 3 = -3x so
y = -3x + 3. Filling in a 0 for y will give us the coordinate we want for the x-intercept (the point where this line goes through the x-axis):
0 = -3x + 3 and
-3 = -3x so
x = 1
The coordinate on the x-axis such that AC = BC is (1, 0)