Answer: A <u>Nebula </u>is left behind. A spectacular explosion in which a star ejects most of its mass in a violently expanding cloud of debris.
Hope this helps!
Answer:
The speed of waves on this wire is 329.14 m/s
Explanation:
Given;
tension of the wire, T = 650 N
mass per unit length, μ = 0.06 g /cm = 0.006 kg/m
(convert the unit of mass per length in g/cm to kg/m by dividing by 10 = 0.06 / 10 = 0.006 kg/m)
The speed of waves on this wire is given as;
Therefore, the speed of waves on this wire is 329.14 m/s
Answer:
Option B, Fix the piston in place so the volume of the pas remains constant
Explanation:
As we know

The effect on variable due to another variable can be studied by keeping the third variable constant.
Hence, in order the study the variation of temperature with pressure or vice versa, the volume needs to fixed at a certain value.
Hence, option B is correct
Answer:
Explanation:
The charges will repel each other and go away with increasing velocity , their kinetic energy coming from their potential energy .
Their potential energy at distance d
= kq₁q₂ / d
= 9 x 10⁹ x 36 x 10⁻¹² / 2 x 10⁻² J
= 16.2 J
Their total kinetic energy will be equal to this potential energy.
2 x 1/2 x mv² = 16.2
= 3 x 10⁻⁶ v² = 16.2
v = 5.4 x 10⁶
v = 2.32 x 10³ m/s
When masses are different , total P.E, will be divided between them as follows
K E of 3 μ = (16.2 / 30+3) x 30
= 14.73 J
1/2 X 3 X 10⁻⁶ v₁² = 14.73
v₁ = 3.13 x 10³
K E of 30 μ = (16.2 / 30+3) x 3
= 1.47 J
1/2 x 30 x 10⁻⁶ x v₂² = 1.47
v₂ = .313 x 10³ m/s
Answer:
B train!
Explanation:
A train travelled at 40 km/hr. (120/3)
B train traveled at 45 km/hr (180/4)