Answer: The sound will change due to changes in frequency and the wavelength of the airplane.
Explanation: Let assume that the observer is at a stationary position. The wavelength of the sound from the airplane reduces and the frequency increases as the plane is moving toward the observer. As the airplane passes by, that is, moving away from the observer, the frequency starts to reduce while the wavelength of the sound starts to increase.
The sound that the observer hears will change base on the illustration above.
Answer:
d = 68.18 m
Explanation:
Given that,
Initial velocity, u = 15 m/s
Finally it comes to stop, v = 0
Acceleration, a = -1.65 m/s²
Time, t = 2.5 s
We need to find the distance covered by the hayride before coming to a stop. Let d is the distance covered. Using third equation of motion to find it :

So, the hayride will cover a distance of 68.18 m.
Kelvin is a base unit of temperature
scale from SI that defines as zero degree Kelvin (absolute zero). The absolute
zero is a hypothetical statement that all molecular movement stops because
there is no transient of energy for the molecules to move. When converting
temperature in degree Celsius to Kelvin, add 273. You are given 600K and you
are asked to find it in degrees Celsius.
T(K) = T(C) + 273
600 K = T(C) + 273
T(C) = 600 – 273
T(C) = 327 °C
<span>The answer is letter B.</span>
Answer:
Sound waves are produced when something vibrates.
Explanation:
The vibrating body causes the medium (water, air, etc.) Vibrations in air are called traveling longitudinal waves, which we can hear. Sound waves consist of areas of high and low pressure called compressions and rarefactions, respectively.
Sorry if this if wrong
Yes. Either way though, humans have more chromosomes than any other species.