Answer:
V = I(R+r)
Explanation:
According to ohms law, the current (I) passing through a metallic conductor at constant temperature is directly proportional to the potential difference (V) across its end.
Mathematically, V= IR where V is the potential difference
I is the current
R is resistance
Given emf (E) = IRt... (1)
where E is the emf
Rt is the total equivalent resistance
The external resistance Rv is connected in series with the internal resistance 'r' to give total equivalent resistance Rt = (R+r)
Substituting in equation 1
E = I(R+r)
The equivalent potential difference V = I(R+r)
Answer:
Part a)
Final speed of the corn is 19.05 m/s
Part b)
Kinetic energy of the corn is 3.1 J
Explanation:
Part a)
As we know that the initial position of the corn is
h = 18.5 m
now we also know that it will fall from rest and moving under constant acceleration so we will have



Part b)
Kinetic energy of the corn is given as



Answer:

Explanation:
Assume that the distance travelled initially is d.
In order to stop the block you need some external force which is friction.
If we use the law of energy conservation:

a)
Looking at the formula you can see that the mass doesn't affect the distance travelled, as lng as the initial velocity is constant (Which indicates that the force must be higher to push the block to the same speed) therefore the distance is the same.
b) If the velocity is doubled, then the distance travelled is multiplied by 4, because the distance deppends on the square of the velocity.
1.12 m/s is the velocity. You can get the velocity of a wave by multiplying the frequency and wavelength together. The product is the velocity.