Answer:
I₁ = 1.6 A (through 7 Ohm Resistor)
I₂ = 1.3 A (through 8 Ohm Resistor)
I₃ = I₁ - I₂ = 1.6 A - 1.3 A = 0.3 A (through 4 Ohm Resistor)
Explanation:
Here we consider two loops doe applying Kirchhoff's Voltage Law (KVL). The 1st loop is the left side one with a voltage source of 12 V and the 2nd Loop is the right side one with a voltage source of 9 V. We name the sources and resistor's as follows:
R₁ = 7 Ω
R₂ = 4 Ω
R₃ = 8 Ω
V₁ = 12 V
V₂ = 9 V
Now, we apply KVL to 1st Loop:
V₁ = I₁R₁ + (I₁ - I₂)R₂
12 = 7I₁ + (I₁ - I₂)(4)
12 = 7I₁ + 4I₁ - 4I₂
I₁ = (12 + 4 I₂)/11 ------------ equation (1)
Now, we apply KVL to 2nd Loop:
V₂ = (I₂ - I₁)R₂ + I₂R₃
9 = (I₂ - I₁)(4) + 8I₂
9 = 4I₂ - 4I₁ + 8I₂
9 = 12I₂ - 4I₁ -------------- equation (2)
using equation (1)
9 = 12I₂ - 4[(12 + 4 I₂)/11]
99 = 132 I₂ - 48 - 16 I₂
147 = 116 I₂
I₂ = 147/116
I₂ = 1.3 A
use this value in equation 2:
9 = 12(1.3 A) - 4I₁
4I₁ = 15.6 - 9
I₁ = 6.6 A/4
I₁ = 1.6 A
Hence, the currents through all resistors are:
<u>I₁ = 1.6 A (through 7 Ohm Resistor)</u>
<u>I₂ = 1.3 A (through 8 Ohm Resistor)</u>
<u>I₃ = I₁ - I₂ = 1.6 A - 1.3 A = 0.3 A (through 4 Ohm Resistor)</u>
Answer:
b. The side the boy is sitting on will tilt downward
Explanation:
Initially, the seesaw is balanced because the torque exerted by the boy is equal to the torque exerted by the girl:

where
Wb is the weight of the boy
db is the distance of the boy from the pivot
Wg is the weight of the girl
dg is the distance of the girl from the pivot
When the boy moves backward, the distance of the boy from the pivot (
increases, therefore the torques are no longer balanced: the torque exerted by the boy will be larger, and therefore the side of the boy will tilt downward.
I’d think the answer would be C. i’m just kinda guessing but my thought process is this (as simply as i can put it because physics is confusing):
so for example say you throw a ball across a flat surface. inertia is what keeps the ball rolling straight in a line, so unless you were to maybe put your hand in front of the ball or something, it would just go straight forever.
this is what happens with the planets. they go in a straight line, but since there’s gravity, the planets are also being pulled towards the sun. so gravity and inertia are why the planets orbit in the circle pattern they do. so when we remove inertia, we’re removing the state in which the planets keep going straight while being pulled towards a center point (the sun). this causes gravity to be the only factor in the planets orbiting. so that being said, the planets would just be pulled towards the sun. :)
Answer:

Explanation:
given,
op-amp circuit with a gain of = (Av₁) = 96 V/V
Band width = (Bw₁) = 8 kHz
Required bandwidth(Bw₂) = 32 kHz
Highest gain available =(Av₂) = ?
For the given system Bandwidth product is constant
Av₁ Bw₁ = Av₂ Bw₂
96 x 8 = Av₂ x 32


the highest gain available under these conditions 
Yellow and red hope that helped