The perimeter "P" is equal to the length of the base of one triangle multiplied by the "n" number of triangles in the figure plus two times the length of another side. The equation for the perimeter is P = 5n + 14.
We are given triangles. The triangles are arranged in a certain pattern. The length of the base of each triangle is equal to 5 units. The length of the other two sides is 7 units each. We conclude that all the triangles are isosceles. We need to find the relationship between the number of triangles and the perimeter of the figure. Let the perimeter of the figure having "n" number of triangles be represented by the variable "P".
P(1) = 14 + 5(1)
P(2) = 14 + 5(2)
P(3) = 14 + 5(3)
We can see and continue the pattern. The relationship between the perimeter and the number of triangles is given below.
P(n) = 14 + 5n
To learn more about perimeter, visit :
brainly.com/question/6465134
#SPJ1
Answer:
The answer is option 4.
Step-by-step explanation:
As there is a <em>M</em><em>o</em><em>d</em><em>u</em><em>l</em><em>u</em><em>s</em><em> </em><em>s</em><em>i</em><em>g</em><em>n</em><em> </em>so the answer will be always positive.
e.g
|1.2| = 1.2
|-5.6| = 5.6 (always interested in the positive value)
D since it looks pretty difficult
Answer:
Isosceles triangle
Step-by-step explanation:
Answer:
262/365
Step-by-step explanation:
So as you can see there is no more information aout Kay on her birthday, so the chances of her birthday being on a week day is given by the total number of the weekdays of the year between the total number of days in a year, so in 2019 there are 262 weekdays, divided by 365 you get the probability that Kay´s birthday falls on a weekday.
262/365=,7178=71,78%
So the probability of Kay´s brithday falling on a week day will be 71,72%