Answer:
13
Step-by-step explanation:
where n is the number of terms, a1 is the first term and an is the last term. The sum of the first n terms of an arithmetic sequence is called an arithmetic series . Example 1: Find the sum of the first 20 terms of the arithmetic series if a1=5 and a20=62 .An arithmetic sequence is a sequence where the difference between any two consecutive terms is a constant. ... As with any recursive formula, the initial term of the sequence must be given. An explicit formula for an arithmetic sequence with common difference d is given by an=a1+d(n−1) a n = a 1 + d ( n − 1 ) .
The diameter is equal to the radius multiplied by 2.
Answer: 21
steps:
1) 6(4) - 3
2) 24 - 3
3) 21
U = ( -8 , -8)
v = (-1 , 2 )
<span>the magnitude of vector projection of u onto v =
</span><span>dot product of u and v over the magnitude of v = (u . v )/ ll v ll
</span>
<span>ll v ll = √(-1² + 2²) = √5
</span>
u . v = ( -8 , -8) . ( -1 , 2) = -8*-1+2*-8 = -8
∴ <span>(u . v )/ ll v ll = -8/√5</span>
∴ the vector projection of u onto v = [(u . v )/ ll v ll] * [<span>v/ ll v ll]
</span>
<span> = [-8/√5] * (-1,2)/√5 = ( 8/5 , -16/5 )
</span>
The other orthogonal component = u - ( 8/5 , -16/5 )
= (-8 , -8 ) - <span> ( 8/5 , -16/5 ) = (-48/5 , -24/5 )
</span>
So, u <span>as a sum of two orthogonal vectors will be
</span>
u = ( 8/5 , -16/5 ) + <span>(-48/5 , -24/5 )</span>
Answer:
start with what you know
Step-by-step explanation:
makes you smarter