Answer:
2x^2 = 6x - 5.
-x^2 - 10x = 34.
These have only complex roots/
Step-by-step explanation:
3x^2 - 5x = -8
3x^2 - 5x + 8 = 0
There are complex roots if the discriminant 9b^2 - 4ac) is negative.
Here the discriminant D = (-5)^2 - 4*-5*8 = 25 + 160
This is positive so the roots are real.
2x^2 = 6x - 5
2x^2 - 6x + 5 = 0
D = (-6)^2 - 4*2*5 = 36 - 40 = -4
So this has no real roots only complex ones.
12x = 9x^2 + 4
9x^2 - 12x + 4 = 0
D = (-12)^2 - 4*9 * 4 = 144 - 144 = 0.
- Real roots.
-x^2 - 10x = 34
x^2 + 10x + 34 = 0
D = (10)^2 - 4*1*34 = 100 - 136 = -36.
No real roots = only complex roots.
Answer:
Below in bold.
Step-by-step explanation:
Nth term an = a1 + d(n - 1) where a1 = term 1 and d = common difference.
Here a1 = 5 and d = 8-5 = 3.
So an = 5 + 3(n - 1)
15th term a15
= 5 + 3(15 - 1)
= 5 + 42
= 47.
Answer:
y intercept (0, 4)
x intercept (4, 0)
I hope this is good enough:
Answer:
Probability that Caroline buys fruit, a CD or both is 0.76.
Step-by-step explanation:
Let event A = Caroline buys fruit, event B = Caroline buys CD, Ac and Bc are complementary events.
Events AB, ABc, AcB and AcBc are jointly exhaustive and disjoint, hence P(AB) + P(ABc) + P(AcB) +P(AcBc) =1.
Events A and B independent, hence Ac and Bc independent too and probability P(AcBc) = P(Ac)*P(Bc) = (1 - P(A))(1-P(B)) = 0.6*0.4 = 0.24.
Required probability P(AB + ABc + AcB ) = P(AB) + P(ABc) + P(AcB) = 1- P(AcBc) = 1 - 0.24 = 0.76.