Answer:
0.06 Nm
Explanation:
mass of object, m = 3 kg
radius of gyration, k = 0.2 m
angular acceleration, α = 0.5 rad/s^2
Moment of inertia of the object

I = 3 x 0.2 x 0.2 = 0.12 kg m^2
The relaton between the torque and teh moment off inertia is
τ = I α
Wheree, τ is torque and α be the angular acceleration and I be the moemnt of inertia
τ = 0.12 x 0.5 = 0.06 Nm
Answer:
The displacement of the train in this time period is 2,616.86 m.
Explanation:
A Uniformly Varied Rectilinear Motion is Rectilinear because the mobile moves in a straight line, Uniformly because of there is a magnitude that remains constant (in this case the acceleration) and Varied because the speed varies, the final speed being different from the initial one.
In other words, a motion is uniformly varied rectilinear when the trajectory of the mobile is a straight line and its speed varies the same amount in each unit of time (the speed is constant and the acceleration is variable).
An independent equation of useful time in this type of movement is:
<em>Expression A</em>
where:
- vf = final velocity
- vi = initial velocity
- a = acceleration
- d = distance
The equation of velocity as a function of time in this type of movement is:
vf=vi + a*t
So the velocity can be calculated as: 
In this case:
- vf=42.4 m/s
- vi=27.5 m/s
- t=75 s
Replacing in the definition of acceleration: 
a=0.199 m/s²
Now, replacing in expression A:

Solving:

d= 2,616.86 m
<u><em>The displacement of the train in this time period is 2,616.86 m.</em></u>
The correct answer for the question that is being presented above is this one: "256 kpa." <span>If a gas has a gage pressure of 156 kPa, its absolute pressure is approximately 256 kpa. </span>Gauge pressure (GP) is 0 at atmospheric pressure (AP). Absolute pressure= GP + AP. Since atmospheric pressure is ca. 100 kpa; 100 + 156 is 256 kpa.