Answer:
0.18216 T
Explanation:
N = Number of turns = 219
A = Area = 
r = Radius = 1 cm
= Angular speed = 
Maximum emf is given by

The strength of the magnetic field is 0.18216 T
Answer:
Weight at the surface of Jupiter's moon Io is 8.13 N .
Explanation:
Given :
Acceleration due to gravity at the surface of Jupiter's moon is
.
Weight of watermelon in earth ,
.
Acceleration due to gravity at the surface of earth is
.
We know , weight is given by :

Therefore , mass at the surface of Jupiter's moon Io is :

Hence , this is the required solution .
Answer:
v = 98.75 km/h
Explanation:
Given,
The distance driver travels towards the east, d₁ = 135 km
The time period of the travel, t₁ = 1.5 h
The halting time, tₓ = 46 minutes
The distance driver travels towards the east, d₂ = 215 km
The time period of the travel, t₁ = 2 h
The average speed of the vehicle before stopping
v₁ = d₁/t₁
= 135/1.5
= 90 km/h
The average speed of vehicle after stopping
v₂ = d₂/t₂
= 215/2
= 107.5 km/h
The total average velocity of the driver
v = (v₁ +v₂) /2
= (90 + 107.5)/2
= 98.75 km/h
Hence, the average velocity of the driver, v = 98.75 km/h
Answer:We are usually not aware of the electric force acting between two everyday objects because most everyday objects have as many plus charges as minus charges. Option A
Explanation:An electric force is exerted between any two charged objects( either positive or negative). Objects with the same charge will repel each other, and objects with opposite charge will attract each other. The strength of the electric force between any two charged objects depends on the amount of charge that each object contains and on the distance between the two charges. Electric charges are generated all around us due to different surfaces bearing different types of charges. We are usually not aware of it because the quantity of positive charges equals the number of negative charges.
Answer:
45000 K .
Explanation:
Given :
A liter of a gas weigh 2 gram at 300 kelvin temperature and 1 atm pressure
We need to find the temperature in which 1 litre of the same gas weigh 1 gram
in pressure 75 atm.
We know, by ideal gas equation :

Here , n is no of moles , 
Putting initial and final values and dividing them :


Hence , this is the required solution.