Answer:
D. All of the above
Explanation:
E = MC² is a common equation in physics.
E is energy
M is mass
C is the speed of light
The law was stated by Albert Einstein.
- From this law, it was shown that energy is released when matter is destroyed.
- Mass and energy are equivalent as seen in nuclear reactions where mass is converted to energy.
- Mass and energy is usually conserved in any process and this is a subtle modification of the law of conservation of matter and energy.
- Most of these postulates apply to nuclear reactions which generally do not follow some precepts of chemical laws.
A. Oxygen ion
I am not sure but that's the right one I think. If I am wrong then I am sorry
Answer:
100.52
Explanation:
from the ideal gas equation PV=nRT
for a given container filled with any ideal gas P and V remains constant.So T is also constant.R is as such a constant.
So n i.e no of moles will also be constant.
no of moles of Ar=3.224/40=0.0806
no of moles of unknown gas=0.0806
molecular wt of unknown gas=8.102/0.0806=100.52
Answer:
5400 cans
Explanation:
First we convert the total weight, 1 ton, to grams:

Now we need to know the mass of aluminum:

Now we make the relation between the mass of aluminum in 1 ton of the earth's crust and the mass of aluminum per can:

Answer:
4.26 %
Explanation:
There is some info missing. I think this is the original question.
<em>Calculate the percent ionization of nitrous acid in a solution that is 0.249 M in nitrous acid. The acid dissociation constant of nitrous acid is 4.50 × 10
⁻⁴.</em>
<em />
Step 1: Given data
Initial concentration of the acid (Ca): 0.249 M
Acid dissociation constant (Ka): 4.50 × 10
⁻⁴
Step 2: Write the ionization reaction for nitrous acid
HNO₂(aq) ⇒ H⁺(aq) + NO₂⁻(aq)
Step 3: Calculate the concentration of nitrite in the equilibrium ([A⁻])
We will use the following expression.
![[A^{-} ] = \sqrt{Ca \times Ka } = \sqrt{0.249 \times 4.50 \times 10^{-4} } = 0.0106 M](https://tex.z-dn.net/?f=%5BA%5E%7B-%7D%20%5D%20%3D%20%5Csqrt%7BCa%20%5Ctimes%20Ka%20%7D%20%3D%20%5Csqrt%7B0.249%20%5Ctimes%204.50%20%5Ctimes%2010%5E%7B-4%7D%20%20%7D%20%3D%200.0106%20M)
Step 4: Calculate the percent ionization of nitrous acid
We will use the following expression.
![\alpha = \frac{[A^{-} ]}{[HA]} \times 100\% = \frac{0.0106M}{0.249} \times 100\% = 4.26\%](https://tex.z-dn.net/?f=%5Calpha%20%3D%20%5Cfrac%7B%5BA%5E%7B-%7D%20%5D%7D%7B%5BHA%5D%7D%20%5Ctimes%20100%5C%25%20%3D%20%5Cfrac%7B0.0106M%7D%7B0.249%7D%20%5Ctimes%20100%5C%25%20%3D%204.26%5C%25)