What is the question and are there answers to go with it
Answer:
As you move across a period, the atomic mass increases because the atomic number also increases. ... The atomic mass for any given atom mainly comes from the mass of the protons and neutrons.
Explanation:
Answer:
Explanation:
BrCl₃ is an interhalogen compound with a hybridization of sp³d. The approximate bond angles can be predicted from the structure (attached below). Although, the lewis structure might be predicted to be trigonal bipyramidal from the structure, it is however a T-shaped geometry because of it's two lone pairs.
Also, from the structure attached, it can be predicted that the approximate bond angles about the central atom is 120° (360 ÷ 3) since each of the three chlorine atoms is equally spaced about the central atom.
Answer: The correct answer is "B" two bonding domains(or bonding pairs) or two non bonding domains(or lone pairs)
Explanation:
Molecular geometry/structure is a three dimensional shape of a molecule. It is basically an arrangement of atoms in a molecule.It is determined by the central atom, its surrounding atoms and electron pairs.According to VSEPR theory, there are 5 basic shapes of a molecule: linear, trigonal planar, tetrahedral, trigonal bipyramidal and octahedral.
A)Four bonding domains and zero non bonding domains: shape is tetrahedral and bond angle is 109.5°
B)Two bonding domains and two non bonding domains(lone pairs): shape is bent and bond angle is 104.5°
C)Three bonding domains and one non bonding domain: shape is trigonal pyramidal and bond angle is 107°
D)Two bonding domain and zero non bonding domain: shape is linear and bond angle is 107°
E)Two bonding domain and one non bonding domain: bent shape and bond angle is 120°
F)Three bonding domains and zero nonbonding domain: shape is trigonal planar and bond angle is 120°
Hence Two bonding domains and two non bonding domains have the smallest bond angle.
Answer:
[H₂SO₄] = 6.07 M
Explanation:
Analyse the data given
8.01 m → 8.01 moles of solute in 1kg of solvent.
1.354 g/mL → Solution density
We convert the moles of solute to mass → 8.01 mol . 98g /1mol = 785.4 g
Mass of solvent = 1kg = 1000 g
Mass of solution = 1000g + 785.4 g = 1785.4 g
We apply density to determine the volume of solution
Density = Mass / volume → Volume = mass / density
1785.4 g / 1.354 g/mL = 1318.6 mL
We need this volume in L, in order to reach molarity:
1318.6 mL . 1L / 1000mL = 1.3186 L ≅ 1.32L
Molarity (mol/L) → 8.01 mol / 1.32L = 6.07M