Answer: 0.0014 atm
Explanation:
Given that,
Original pressure of air (P1) = 1.08 atm
Original volume of air (T1) = 145mL
[Convert 145mL to liters
If 1000mL = 1l
145mL = 145/1000 = 0.145L]
New volume of air (V2) = 111L
New pressure of air (P2) = ?
Since pressure and volume are given while temperature is held constant, apply the formula for Boyle's law
P1V1 = P2V2
1.08 atm x 0.145L = P2 x 111L
0.1566 atm•L = 111L•P2
Divide both sides by 111L
0.1566 atm•L/111L = 111L•P2/111L
0.0014 atm = P2
Thus, the new pressure of air when the volume is decreased to 111 L is 0.0014 atm
Answer:
This element is Rubidium (Rb) and has an average atomic mass of 85.468 u
Explanation:
The average mass of an element is calculated by taking the average of the atomic masses of its stable isotopes.
The enitre atomic mass = 100 % or 1
⇒ this consists of X-85 with 72.17 % abundance with atomic massof 84.9118 g/mol
72.17 % = 0.7217
⇒ this consists of X-87 with 27.83 % abundance with atomic mass of 86.9092 g/mol
27.83 % = 0.2783
To calculate the mass of this isotope we use the following:
0.7271 * 84.9118 + 0.2783 * 86.9092 =85.468 g/mol
This element is Rubidium(Rb) and has an average atomic mass of 85.468 u
The shape of the H2O molecule is a Bent Triatomic.
It isn't symmetrical.
The H2O molecule is polar.