Answer:
The specific heat of gold is 0.129 J/g°C
Explanation:
Step 1: Data given
Mass of gold = 15.3 grams
Heat absorbed = 87.2 J
Initial temperature = 35.0 °C
Final temperature = 79.2 °C
Step 2:
Q = m*c*ΔT
⇒ Q =the heat absorbed = 87.2 J
⇒ m = the mass of gold = 15.3 grams
⇒ c = the specific heat of gold = TO BE DETERMINED
⇒ ΔT = The change in temperature = T2 - T1 = 79.2 - 35.0 = 44.2 °C
87.2 J = 15.3g * c * 44.2°C
c = 87.2 / (15.3 * 44.2)
c = 0.129 J/g°C
The specific heat of gold is 0.129 J/g°C
Answer:
You never listed the options
Explanation:
A chemical reaction is a process that involves rearrangement of the molecular or ionic structure of a substance, as opposed to a change in physical form or a nuclear reaction.
Is a measure of how heavy atoms are. It's the ratio of the average mass per atom of an element from a given sample to 1/12 the mass of a carbon-12 atom."
Answer:
SO₃(g) + H₂O(l) → H₂SO₄(aq)
Explanation:
The<em> molecular formula for the involved species</em> are:
- Sulfur trioxide = SO₃. ("trioxide" indicates the presence of 3 oxygen atoms).
With the above information in mind we can proceed to write the reaction equation:
- SO₃(g) + H₂O(l) → H₂SO₄(aq)