Answer:
82.88%
Step-by-step explanation:
Given that:
Mean (μ) = 16.7 pounds
Standard deviation (σ) = 3.8 pounds
Number of pounds eaten = 11.5 = x
P(11.5 ≥ x ≤11.5)
P(x ≤ 11.5) :
Zscore = (x - μ) / σ
Zscore = (11.5 - 16.7) / 3.8
Zscore = - 5. 2 / 3.8
Zscore = −1.368421
P(Z ≤ - 1.3684) = 0.085593 (Z probability calculator)
P(x ≥ 11.5) ;
Zscore = (x - μ) / σ
Zscore = (11.5 - 16.7) / 3.8
Zscore = - 5. 2 / 3.8
Zscore = −1.368421
P(Z ≥ - 1.3684) = 0.91441 (Z probability calculator)
P(Z ≥ - 1.3684) - P(Z ≤ - 1.3684)
0.91441 - 0.085593 = 0.828817
0.828817 * 100% = 82.88%