Answer:
v = 31.3 m / s
Explanation:
The law of the conservation of stable energy that if there are no frictional forces mechanical energy is conserved throughout the point.
Let's look for mechanical energy at two points, the highest where the body is at rest and the lowest where at the bottom of the plane
Highest point
Em₀ = U = m g y
Lowest point
= K = ½ m v²
As there is no friction, mechanical energy is conserved
Em₀ =
m g y = ½ m v²
v = √ 2 g y
Where we can use trigonometry to find and
sin 30 = y / L
y = L sin 30
Let's replace
v = RA (2 g L sin 30)
Let's calculate
v = RA (2 9.8 100.0 sin30)
v = 31.3 m / s
Explanation:
When neutral objects are placed in the vicinity of charged objects,they get attracted.
The isolated neutral object has positive charge and negative charge spread throughout it completely.
When a charged particle is brought,the opposite charges in the neutral object occupy the positions near to the charged particle and the like charges occupy the positions far from the charged particle.
This creates a dipole with some dipole moment.
This dipole attracts to the field of the charged particle.
Answer:
a = 5 [m/s²]
Explanation:
To solve this problem we must use the following equation of kinematics.

where:
Vf = final velocity = 20 [m/s]
Vo = initial velocity = 10 [m/s]
t = time = 2 [s]
a = acceleration [m/s²]
Now replacing:
![20 =10 +a*2\\10=2*a\\a=5[m/s^{2} ]](https://tex.z-dn.net/?f=20%20%3D10%20%2Ba%2A2%5C%5C10%3D2%2Aa%5C%5Ca%3D5%5Bm%2Fs%5E%7B2%7D%20%5D)
All components, Abiotic to Biotic