The wall will push back, in exactly the opposite direction, and with
exactly the same size force.
That's why the net force on the palm of your hand is zero, and that
in turn is the reason that your hand doesn't accelerate.
If you keep increasing the strength of your push, then eventually you
exceed the force that the wall is capable of delivering. Then the wall
crumbles and falls, your hand accelerates in the direction you're pushing,
and the crowd goes wild !
Answer:
It is made up of molecules which are pulled down to Earth by gravity. That pull makes molecules bump into each other, exerting pressure. Our bodies are specially adapted to living under 1 kilogram per square centimeter (14.7 pounds per square inch) of pressure pushing down on us at sea level!
Explanation:
Answer:
Explanation:
An example of an intense aerobic activity would be running/ sprinting sprinting targets six specific muscle groups: hamstrings, quadriceps, glutes, hips, abdominals and calves. Sprinting is a total body workout featuring short, high-intensity repetitions and long, easy recoveries.
Answer:
<h2>9.39 m/s</h2>
Explanation:
The velocity of the bowling ball can be found by using the formula

p is the momentum
m is the mass
From the question we have

We have the final answer as
<h3>9.39 m/s</h3>
Hope this helps you
Answer:
The resistance is found to be 6Ω
The current is found to be 0.66 A
Explanation:
The resistance of a conductor in terms of its dimensions is given as:
R = ρL/A
where,
R = resistance = ?
ρ = resistivity = 3 x 10⁴ Ω.m
L = Length = 4 mm = 0.004 m
A = Cross-sectional area = 0.2 mm² = 0.2 x 10⁻⁶ m²
Therefore,
R = (3 x 10⁴ Ω.m)(0.004 m)/(0.2 x 10⁻⁶ m²)
<u>R = 6 Ω</u>
Now, the potential difference between both ends of the resistor is:
ΔV = 16 V - 12 V = 4 V
Now, from Ohm's Law:
V = IR
I = V/R
I = 4 V/ 6 Ω
<u>I = 0.66 A</u>