The weight of the car in the picture of the computer screen is 9,800 Newton's.
Elements<span> in the same </span>group<span> in the periodic table </span>have similar chemical properties<span>. This is because their atoms </span>have<span> the same number of electrons in the highest occupied energy level. </span>Group<span> 1 </span>elements<span> are reactive metals called the alkali metals.</span>Group<span> 0 </span>elements<span> are unreactive non-metals called the noble gases.
</span>
Answer:
This procces is called evaporation.
Explanation:
When you have liquid water that is transformed into steam, a phase change is called evaporation. The temperature for the evaporation of water depends on the pressure, for example for water at atmospheric pressure the temperature of evaporation is equal to 100°C. as the pressure increases are achieved evaporation temperatures higher. When that happens, the phase change temperature of the water is not increasing, as the process that takes place is the transfer of latent heat and applies only to changes of phase, that is to say at atmospheric pressure when it has 100% of the steam this will be at 101°C.
Answer:
The answer to the question is as follows
The acceleration due to gravity for low for orbit is 9.231 m/s²
Explanation:
The gravitational force is given as

Where
= Gravitational force
G = Gravitational constant = 6.67×10⁻¹¹
m₁ = mEarth = mass of Earth = 6×10²⁴ kg
m₂ = The other mass which is acted upon by
and = 1 kg
rEarth = The distance between the two masses = 6.40 x 10⁶ m
therefore at a height of 400 km above the erth we have
r = 400 + rEarth = 400 + 6.40 x 10⁶ m = 6.80 x 10⁶ m
and
=
= 9.231 N
Therefore the acceleration due to gravity =
/mass
9.231/1 or 9.231 m/s²
Therefore the acceleration due to gravity at 400 kn above the Earth's surface is 9.231 m/s²
She can put chalk in vinegar as the vinegar will disintegrate the chalk chemically demonstrating chemical changes. But for physical changes she can break the chalk into small pieces by smashing it with something or her hand.