Did you ever find the answer?
C. 0.25 because you divide 0.06 by 0.24
The shape of a bst approaches that of a perfectly balanced binary tree, (log2n) is the time complexity for a balanced binary search tree in case of insertions and search.
In computing, binary bushes are mainly used for looking and sorting as they offer a way to save statistics hierarchically. a few common operations that may be conducted on binary trees encompass insertion, deletion, and traversal.
A binary tree has a special situation that each node could have a most of two youngsters. A binary tree has the benefits of each an ordered array and a linked listing as search is as brief as in a taken care of array and insertion or deletion operation are as fast as in related listing.
In pc science, a binary tree is a tree information shape in which every node has at maximum two youngsters, that are known as the left baby and the proper toddler.
Learn more about binary trees here brainly.com/question/16644287
#SPJ4
Answer:
To divide, use / instead of \.
Examples: 1+2, 1/3+1/4, 2^3 * 2^2
(x+1)(x+2) (Simplify Example), 2x^2+2y x=5, y=3 (Evaluate Example)
y=x^2+1 (Graph Example), 4x+2=2(x+6) (Solve Example)
Step-by-step explanation:
example
Answer:
There are (63) combinations. The notation means "six choose three". Out of six items (flavors) choose three.
(nk)=n!k!(n−k)!.
(63)=6!3!3!.
Think of it this way. There are 6 ways to choose a flavor. Once you choose, there are 5 ways to choose the next. After that, there are 4 flavors left. which is 6!/3!=6⋅5⋅4⋅3⋅2⋅13⋅2⋅1=6⋅5⋅4=120.
But, you could have chosen {chocolate,vanilla,strawberry} and you get the same combination as {vanilla, strawberry, chocolate} so we have to divide by 3!=3⋅2⋅1=6 to account for the order of choosing.
So the number of combinations of flavors is (63)=1206=20.
<h3>Mark me a brainlist</h3>