1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ilya [14]
3 years ago
9

Poor resistance to scoring in journal bearings is called: a) Fatigue resistance b) cohesive wear c) adhesive wear d) abrasive we

ar
Engineering
1 answer:
mr Goodwill [35]3 years ago
8 0

Answer:

b) Cohesive wear.

Explanation:

The question has some engineering subjects as Fatigue Mechanical, surface engineering, bearings design and material engineering.

According the definition of cohesive wear is the damage, gradual deformation  of material at solid surfaces.

You might be interested in
Helium is used as the working fluid in a Brayton cycle with regeneration. The pressure ratio of the cycle is 8, the compressor i
Temka [501]

Answer:

Explanation:

Find the temperature at exit of compressor

T_2=300 \times 8^{\frac{1.667-1}{1.667} }\\=689.3k

Find the work done by the compressor

\frac{W}{m} =c_p(T_2-T_1)\\\\=5.19(689.3-300)\\=2020.4kJ/kg

Find the actual workdone by the compressor

\frac{W}{m} =n_c(\frac{W}{m} )\\\\=1 \times 2020.4kJ/kg

Find the temperature at exit of the turbine

T_4=\frac{1800}{8^{\frac{1.667-1}{1.667} }} \\\\=787.3k

Find the actual workdone by the turbine

1 \times 5.19 (1800-783.3)\\=5276.6kJ/kg

Find the temperature of the regeneration

\epsilon = \frac{T_5-T_2}{T_4-T_2} \\\\0.75=\frac{T_5-689.3}{783.3-689.3} \\\\T_5=759.8k

Find the heat supplied

Q_i_n=c_p(T_3-T_5)\\\\=5.19(1800-759.8)\\\\=5388.2kJ/kg

Find the thermal efficiency

n_t_h=\frac{W_t-W_c}{Q_i_n} \\\\=\frac{5276.6-2020.4}{5388.2} \\\\n_t_h=60.4

60.4%

Find the mass flow rate

m=\frac{W_net}{P} \\\\\frac{60 \times 10^3}{5276.6-2020.4} \\\\=18.42

Find the actual workdone by the compressor

\frac{W_c}{m} =\frac{(\frac{W}{m} )}{n_c} \\\\=\frac{2020.4}{0.8} \\\\=2525.5kg

Find the actual workdone by the turbine

\frac{W_t}{m} =n_t(\frac{W}{m} )\\\\=0.8 \times5.19(1800-783.3)\\\\=4221.2kJ/kg

Find the temperature of the compressor exit

\frac{W_t}{m} =c_p(T_2_a-T_1)\\2525.5=5.18(T_2_a-300)\\T_2_a=787.5k

Find the temperature at the turbine exit

4221.2=5.18(1800-T_4_a)\\\\T_4_a=985k

Find the temperature of regeneration

\epsilon =\frac{T_5-T_2}{T_4-T_2}\\\\0.75=\frac{T_5-787.5}{985-787.5}\\\\T_5=935.5k

6 0
3 years ago
Read 2 more answers
A refrigerated space is maintained at -15℃, and cooling water is available at 30℃, the refrigerant is ammonia. The refrigeration
Illusion [34]

Answer:

(1) 5.74

(2) 5.09

(3) 3.05×10⁻⁵ kg/s

(4) 0.00573 kW

Explanation:

The parameters given are;

Working temperature, T_C  = -15°C = 258.15 K

Temperature of the cooling water, T_H = 30°C = 303.15 K

(1) The Carnot coefficient of performance is given as follows;

\gamma_{Max} = \dfrac{T_C}{T_H - T_C}  =  \dfrac{258.15}{303.15 - 258.15}   = 5.74

(2) For ammonia refrigerant, we have;

h_2 = h_g = 1466.3 \ kJ/kg

h_3 = h_f = 322.42 \ kJ/kg

h_4 = h_3 = h_f = 322.42 \ kJ/kg

s₂ = s₁ = 4.9738 kJ/(kg·K)

0.4538 + x₁ × (5.5397 - 0.4538) = 4.9738

∴ x₁ = (4.9738 - 0.4538)/(5.5397 - 0.4538) = 0.89

h_1 = h_{f1} + x_1 \times h_{gf}

h₁ = 111.66 + 0.89 × (1424.6 - 111.66) = 1278.5 kJ/kg

\gamma = \dfrac{h_1 - h_4}{h_2 - h_1}

\gamma = \dfrac{1278.5 - 322.42}{1466.3 - 1278.5} = 5.09

(3) The circulation rate is given by the mass flow rate, \dot m as follows

\dot m = \dfrac{Refrigeration \ capacity}{Refrigeration \ effect \ per \ unit \ mass}

The refrigeration capacity = 105 kJ/h

The refrigeration effect, Q = (h₁ - h₄) = (1278.5 - 322.42) = 956.08 kJ/kg

Therefore;

\dot m = \dfrac{105}{956.08}  = 0.1098 \ kg/h

\dot m = 0.1098 kg/h = 0.1098/(60*60) = 3.05×10⁻⁵ kg/s

(4) The work done, W = (h₂ - h₁) = (1466.3 - 1278.5) = 187.8 kJ/kg

The rating power = Work done per second = W×\dot m

∴ The rating power = 187.8 × 3.05×10⁻⁵ = 0.00573 kW.

6 0
3 years ago
what are three things that we would need and unlimiated amount of for all of us to obtain everything that we want?
Elanso [62]
Unlimited wants is an economic term that refers to humans’ insatiable appetite for things. We never get enough because there is always something else that we need or want. The term ‘unlimited wants’ is the side of human nature that wants an infinite number of things. However, the resources we have available to get these wants are limited.

There are two halves of scarcity that have plagued us ever since we first set foot on this Earth:

Limited resources.
Unlimited wants.
The Economics of Seinfeld says the following regarding the term:

“Unlimited wants essentially mean that people never get enough, that there is always something else that they would like to have.”

“When combined with limited resources, unlimited wants result in the fundamental problem of scarcity.”

Unlimited wants – limited resources

What we want and need has no limit, i.e., it is infinite. However, what we can afford is finite, i.e., it has a limit. This is a basic condition of human existence.

We are never completely satisfied with everything we consume. We consume a variety of goods and services, but they are never enough.

In other words, there is always something else that I, you, or anybody else would want or need.

The term applies to all socioeconomic groups. Low-income groups have limited resources, and their wants always exceed those resources. However, the same happens with middle-income and upper-income groups. They never feel they have enough.

The reason is a very simple one. Every income group’s resources are finite. However, unlimited want is a feature of every human.

Put simply; our wants and needs are infinite, but our wealth is not.

The economic problem – unlimited wants

‘The economic problem‘ is a term that economists use. It states that the finite resources of an economy are not enough to satisfy all our wants and needs. We also call it ‘the central economic problem‘ or ‘the basic economic problem.’

The main question we ask when considering ‘the economic problem’ is: “How do we satisfy unlimited wants with limited resources?”

As we cannot produce everything, we have to prioritize. We must decide what to produce, how to produce it, and how much to produce. We must also determine for whom to produce.

Human wants are constant and infinite, but the resources to satisfy them are finite. The resources cannot exceed the amount of human and natural resources available.

We produce things that we know people want, as long as we have the resources to make them. How strong or weak demand is determines how much we charge for those things. It also determines how much we produce (supply).

In other words, markets fores, i.e., the forces of supply and demand, in a free market economy, determine prices.

Wants vs. needs

Needs are things without which we cannot survive. Wants are things we desire. However, we can survive without those wants.

Food, water, and housing, for example, are needs. Clothing is also a need. Without food or water, we would die. We would probably die too without housing. In cold countries, we would not survive without clothing.

A nice car, smartphone, and vacation by the beach are wants. If I don’t have a nice car, I will still live. If I don’t go to Cancun for my winter break, I won’t die. However, I want these things.

Fundamental needs are key in the function of the economy. Wants, however, are the driving forces that stimulate demand for things, i.e., demand for goods and services.

We can say either ‘unlimited wants’ or ‘unlimited wants and needs.’

3 0
3 years ago
True/False
Temka [501]

Answer:

<h2>True </h2>

because it maybe have been broken or can cause minor accident.

8 0
3 years ago
Tech A says that some battery corrosion cannot be seen beneath the insulation of the cables. Tech B says
barxatty [35]

Answer: the answer is c

Explanation:

4 0
3 years ago
Other questions:
  • If you're carrying a load that extends beyond the sides of your vehicle, you don't need to clearly mark it unless it extends mor
    13·2 answers
  • A heat pump with an ideal compressor operates between 0.2 MPa and 1 MPa. Refrigerant R134a flows through the system at a rate of
    15·1 answer
  • What is the magnitude of the maximum stress that exists at the tip of an internal crack having a radius of curvature of 2.5×10-4
    13·1 answer
  • The outer surface of a spacecraft in space has an emissivity of 0.6 and an absorptivity of 0.2 for solar radiation. If solar rad
    12·1 answer
  • You are out of gas in the desert and you accidently dropped your phone battery down an Abandoned oil well. You have a charged ca
    14·1 answer
  • What is planning in pretech
    6·1 answer
  • Race cars at the Indianapolis Speedway average speeds of 185 mi/h. After determining the altitude of Indianapolis, find the Mach
    8·1 answer
  • Which of the following identifies the beginning phase of the engineering design process?
    14·1 answer
  • PTAC and window-unit air conditioners often use rotary compressors, which are effective but susceptible to failure due to high h
    8·1 answer
  • A(n) _____________ is used commonly in open split-phase motors to disconnect the start winding from the electrical circuit when
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!