Answer:
#include <iostream>
#include <string>
using namespace std;
bool isPalindrome(string str)
{
int length = str.length();
for (int i = 0; i < length / 2; i++)
{
if (tolower(str[i]) != tolower(str[length - 1 - i]))
return false;
}
return true;
}
int main()
{
string s[6] = {"madam", "abba", "22", "67876", "444244", "trymeuemyrt"};
int i;
for(i=0; i<6; i++)
{
//Testing function
if(isPalindrome(s[i]))
{
cout << "\n " << s[i] << " is a palindrome... \n";
}
else
{
cout << "\n " << s[i] << " is not a palindrome... \n";
}
}
return 0;
}
Answer:
a) 42.08 ft/sec
b) 3366.33 ft³/sec
c) 0.235
d) 18.225 ft
e) 3.80 ft
Explanation:
Given:
b = 80ft
y1 = 1 ft
y2 = 10ft
a) Let's take the formula:

1 + 8f² = (20+1)²
= 8f² = 440
f² = 55
f = 7.416
For velocity of the faster moving flow, we have :
V1 = 42.08 ft/sec
b) the flow rate will be calculated as
Q = VA
VA = V1 * b *y1
= 42.08 * 80 * 1
= 3366.66 ft³/sec
c) The Froude number of the sub-critical flow.
V2.A2 = 3366.66
Where A2 = 80ft * 10ft
Solving for V2, we have:
= 4.208 ft/sec
Froude number, F2 =
F2 = 0.235
d)
= 18.225ft
e) for critical depth, we use :
= 3.80 ft
When a psychologist simply records the relationship between two variables without manipulating them, it is called a correlational study.
The observed relationship does not by itself reveal which variable causes the other. This is the directionally problem. Also, the relationship may be due to a third variable controlling both of the observed variables.
Answer:
h = 10,349.06 W/m^2 K
Explanation:
Given data:
Inner diameter = 3.0 cm
flow rate = 2 L/s
water temperature 30 degree celcius




at 30 degree celcius 

Re = 106390
So ,this is turbulent flow



SOLVING FOR H
WE GET
h = 10,349.06 W/m^2 K
Answer:
Time of submersion in years = 7.71 years
Explanation:
Area of plate (A)= 16in²
Mass corroded away = Weight Loss (W) = 3.2 kg = 3.2 x 106
Corrosion Penetration Rate (CPR) = 200mpy
Density of steel (D) = 7.9g/cm³
Constant = 534
The expression for the corrosion penetration rate is
Corrosion Penetration Rate = Constant x Total Weight Loss/Time taken for Weight Loss x Exposed Surface Area x Density of the Metal
Re- arrange the equation for time taken
T = k x W/ A x CPR x D
T = (534 x 3.2 x 106)/(16 x 7.9 x 200)
T = 67594.93 hours
Convert hours into years by
T = 67594.93 x (1year/365 days x 24 hours x 1 day)
T = 7.71 years